A network complexity metric based on planarity and community structure

[1]  Marianne McKenzie,et al.  Stability-optimization algorithms for the detection of community structure in networks , 2012 .

[2]  O. Shanker,et al.  Dimension Measure for Complex Networks , 2013 .

[3]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[4]  John M. Boyer,et al.  Stop minding your p's and q's: a simplified O(n) planar embedding algorithm , 1999, SODA '99.

[5]  Sallie M. Henry,et al.  On the relationships among three software metrics , 1981, SIGMETRICS Perform. Evaluation Rev..

[6]  Matthias Dehmer,et al.  Towards Information Inequalities for Generalized Graph Entropies , 2012, PloS one.

[7]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[8]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[9]  Dgm Watson,et al.  SOME SHIP DESIGN METHODS , 1977 .

[10]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[11]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Randic Characterization of molecular branching , 1975 .

[13]  Alan Shiell,et al.  A simple guide to chaos and complexity , 2007, Journal of Epidemiology & Community Health.

[14]  Udo Lindemann,et al.  A Planarity-Based Complexity Metric , 2009 .

[15]  Charles Delorme,et al.  On the Randic Image index , 2002, Discret. Math..

[16]  Elaine J. Weyuker,et al.  Evaluating Software Complexity Measures , 2010, IEEE Trans. Software Eng..

[17]  I. Kamwa,et al.  Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance , 2005, IEEE Transactions on Power Systems.

[18]  Danail Bonchev A Simple Integrated Approach to Network Complexity and Node Centrality , 2009 .

[19]  David J. Singer,et al.  The use of network theory to model disparate ship design information , 2014 .

[20]  Lemont B. Kier,et al.  The Meaning of Molecular Connectivity: A Bimolecular Accessibility Model* , 2002 .

[21]  S. Havlin,et al.  Dimension of spatially embedded networks , 2011 .

[22]  Martin Rosvall,et al.  Ranking and clustering of nodes in networks with smart teleportation , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.