Li-alloy based anode materials for Li secondary batteries.

Research to develop alternative electrode materials with high energy densities in Li-ion batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. This critical review focuses on anode materials composed of Group IV and V elements with their composites including Ag and Mg metals as well as transition metal oxides which have been intensively investigated. This critical review is devoted mainly to their electrochemical performances and reaction mechanisms (313 references).

[1]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[2]  Marie-Liesse Doublet,et al.  Electrochemical Behaviors of Binary and Ternary Manganese Phosphides , 2005 .

[3]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[4]  W. Mckinnon,et al.  Structure and electrochemistry of LixWO2 , 1991 .

[5]  J. Lee,et al.  Molten Salt Synthesis of Tin Oxide Nanorods: Morphological and Electrochemical Features , 2004 .

[6]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[7]  X. Qiu,et al.  Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery , 2007 .

[8]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[9]  Thierry Brousse,et al.  New anode systems for lithium ion cells , 2001 .

[10]  K. Edström,et al.  Structural Transformations in Lithiated η′-Cu6Sn5 Electrodes Probed by In Situ Mössbauer Spectroscopy and X-Ray Diffraction , 2002 .

[11]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[12]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[13]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[14]  J. Dahn,et al.  Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes , 2007 .

[15]  Yong Wang,et al.  Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage , 2009 .

[16]  Noriyuki Tamura,et al.  Advanced structures in electrodeposited Tin base negative electrodes for lithium secondary batteries , 2003 .

[17]  Mo-hua Yang,et al.  Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive , 2005 .

[18]  Min Gyu Kim,et al.  Effect of Pore Size and Pore Wall Thickness of Mesoporous Phase in Tin Phosphate Composite on Electrochemical Cycling , 2005 .

[19]  H. Lee,et al.  Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries , 2004 .

[20]  I. Uchida,et al.  Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .

[21]  Seokgwang Doo,et al.  Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode , 2007 .

[22]  Zhaolin Liu,et al.  Electrochemical Performance of Amorphous and Crystalline Sn2 P 2 O 7 Anodes in Secondary Lithium Batteries , 1999 .

[23]  F. Martín,et al.  Electrochemical properties of lead oxide films obtained by spray pyrolysis as negative electrodes for lithium secondary batteries , 2001 .

[24]  S. Yoshida,et al.  New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries , 2003 .

[25]  K. Edström,et al.  Influence of electrode microstructure on the reactivity of Cu2Sb with lithium , 2007 .

[26]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[27]  Hansu Kim,et al.  The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li‐Ion Batteries , 1999 .

[28]  Jaephil Cho,et al.  A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. , 2004, Angewandte Chemie.

[29]  B. Rivolta,et al.  Amorphous cathode materials in lithium-organic electrolyte cells: tungsten and molybdenum trioxides , 1985 .

[30]  J. Yang,et al.  Intermetallic SnSbx compounds for lithium insertion hosts , 2000 .

[31]  T. Fukunaga,et al.  Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering , 2004 .

[32]  Study of Electrochemical Inactivity of Nanocomposites Generated Using High-Energy Mechanical Milling , 2005 .

[33]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[34]  J. Tarascon,et al.  FeP: Another Attractive Anode for the Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process , 2006 .

[35]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[36]  D. Aurbach,et al.  The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. , 2005, Chemical communications.

[37]  P. Kumta,et al.  Chemical Synthesis of Tin Oxide‐Based Materials for Li‐Ion Battery Anodes Influence of Process Parameters on the Electrochemical Behavior , 2000 .

[38]  B. Scrosati,et al.  The role of the morphology in the response of Sb-C nanocomposite electrodes in lithium cells , 2008 .

[39]  J. Jumas,et al.  X-ray Diffraction, 7Li MAS NMR Spectroscopy, and 119Sn Mössbauer Spectroscopy Study of SnSb-Based Electrode Materials , 2002 .

[40]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[41]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[42]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[43]  R. Huggins,et al.  Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials , 1992 .

[44]  Weixiang Chen,et al.  The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes , 2003 .

[45]  N. Takami,et al.  Nano Si Cluster- SiO x ‐C Composite Material as High-Capacity Anode Material for Rechargeable Lithium Batteries , 2006 .

[46]  Bruno Scrosati,et al.  A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance , 2008 .

[47]  J. Morales,et al.  Lead-based systems as suitable anode materials for Li-ion batteries , 2003 .

[48]  D. Billaud,et al.  Lithium insertion into new graphite–antimony composites , 2003 .

[49]  M. Yoshio,et al.  Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations , 2003 .

[50]  Min Gyu Kim,et al.  Electrochemical Characteristics of Ti–P Composites Prepared by Mechanochemical Synthesis , 2006 .

[51]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[52]  S. Dou,et al.  Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites , 2005 .

[53]  Cheol‐Min Park,et al.  Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries , 2006 .

[54]  A. Mansour,et al.  In Situ X‐Ray Absorption and Diffraction Study of the Li Reaction with a Tin Composite Oxide Glass , 2000 .

[55]  Dongmin Im,et al.  Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries , 2008 .

[56]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[57]  S. Boyanov,et al.  P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries , 2009 .

[58]  Ling Huang,et al.  Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries , 2009 .

[59]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[60]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[61]  Anne C. Dillon,et al.  Reversible Lithium‐Ion Insertion in Molybdenum Oxide Nanoparticles , 2008 .

[62]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[63]  J. Lee,et al.  Microemulsion syntheses of Sn and SnO2-Graphite nanocomposite anodes for Li-ion batteries , 2004 .

[64]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[65]  S. Rajendran,et al.  Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries , 2005 .

[66]  M. Balasubramanian,et al.  The Electrochemistry of Germanium Nitride with Lithium , 2003 .

[67]  J. Besenhard,et al.  Anodic materials for rechargeable Li-batteries , 2002 .

[68]  Yuki Yamada,et al.  Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO , 2010 .

[69]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[70]  T. Minami,et al.  Mechanochemical Synthesis and Anode Properties of SnO‐Based Amorphous Materials , 1999 .

[71]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[72]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[73]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[74]  J. Morales,et al.  Improving the Electrochemical Performance of SnO2 Cathodes in Lithium Secondary Batteries by Doping with Mo , 1999 .

[75]  Cheol‐Min Park,et al.  High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries , 2007 .

[76]  J. Tarascon,et al.  Ballmilling Elaboration of Li-Based Negative Electrode Materials , 2003 .

[77]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[78]  R. Huggins,et al.  Multinary alloy electrodes for solid state batteries II. A new LiSiMg alloy negative electrode material for use in high energy density rechargeable lithium cells , 1992 .

[79]  Seokgwang Doo,et al.  An Sn–Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries , 2009 .

[80]  T. Sakai,et al.  Reaction mechanism of a Ag36.4Sb15.6Sn48 nanocomposite electrode for advanced Li-ion batteries , 2005 .

[81]  J. Dahn,et al.  Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium‐Ion Batteries , 1997 .

[82]  J. Yamaki,et al.  Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries , 2002 .

[83]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[84]  Chien-Hsin Yang,et al.  Nano-tin Oxide/Tin Particles on a Graphite Surface as an Anode Material for Lithium-Ion Batteries , 2007 .

[85]  P. Biensan,et al.  Structural and electronic modifications induced by lithium insertion in Sn-based oxide glasses , 2003 .

[86]  Cheol‐Min Park,et al.  Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries , 2010 .

[87]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[88]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[89]  R. Huggins,et al.  The formation and properties of amorphous silicon as negative electrode reactant in lithium systems , 2003 .

[90]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[91]  G. Cao,et al.  A study of Zn4Sb3 as a negative electrode for secondary lithium cells , 2001 .

[92]  Jing-ying Xie,et al.  Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling , 2003 .

[93]  L. Nazar,et al.  Crystal Structure and Electrochemical Behavior of Li2CuP: a Surprising Reversible Crystalline−Amorphous Transformation , 2003 .

[94]  L. Nazar,et al.  Reversible Lithium Uptake by FeP2 , 2003 .

[95]  Min Gyu Kim,et al.  The electrochemical lithium reactions of monoclinic ZnP2 material , 2007 .

[96]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[97]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[98]  Cheol‐Min Park,et al.  Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium , 2009 .

[99]  Jai-Young Lee,et al.  Lithium Insertion in SiAg Powders Produced by Mechanical Alloying , 2001 .

[100]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[101]  Young-woon Kim,et al.  Tin-Based Oxides as Anode Materials for Lithium Secondary Batteries , 2003 .

[102]  Young-Ugk Kim,et al.  Reaction Mechanism of Tin Phosphide Anode by Mechanochemical Method for Lithium Secondary Batteries , 2004 .

[103]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[104]  C. P. Vicente,et al.  SnHPO4: a promising precursor for active material as negative electrode in Li-ion cells , 2001 .

[105]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[106]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[107]  J. Dahn,et al.  Study of the Reaction of Lithium with Isostructural A 2 B and Various Al x B Alloys , 2000 .

[108]  C. Pérez-Vicente,et al.  Electrochemical reactions of polycrystalline CrSb2 in lithium batteries , 2001 .

[109]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[110]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[111]  Cheol‐Min Park,et al.  Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries , 2009 .

[112]  Xiangming He,et al.  Synthesis of nano Sb-encapsulated pyrolytic polyacrylonitrile composite for anode material in lithium secondary batteries , 2007 .

[113]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[114]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[115]  J. Tarascon,et al.  On the Reactivity of Li8-yMnyP4 toward Lithium , 2005 .

[116]  Marie-Liesse Doublet,et al.  Electrochemical Reactivity and Design of NiP2 Negative Electrodes for Secondary Li-Ion Batteries , 2005 .

[117]  T. Sakai,et al.  Nanostructured Ag–Fe–Sn/Carbon Nanotubes Composites as Anode Materials for Advanced Lithium‐Ion Batteries , 2005 .

[118]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[119]  T. Ishihara,et al.  Cyclic Properties of Si-Cu/Carbon Nanocomposite Anodes for Li-Ion Secondary Batteries , 2005 .

[120]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[121]  Cheol‐Min Park,et al.  Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries , 2010 .

[122]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[123]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[124]  Byung Chul Jang,et al.  Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium‐Ion Battery Anodes , 2005 .

[125]  Jaephil Cho,et al.  Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material , 2007 .

[126]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[127]  In-Sung Hwang,et al.  Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes. , 2007, Nano letters.

[128]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[129]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[130]  G. Cui,et al.  A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. , 2007, Small.

[131]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[132]  Cheol‐Min Park,et al.  Novel Antimony/Aluminum/Carbon Nanocomposite for High-Performance Rechargeable Lithium Batteries , 2008 .

[133]  Kozo Watanabe,et al.  Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion , 2000 .

[134]  N. Imanishi,et al.  Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries , 2005 .

[135]  J. Wolfenstine CaSi2 as an anode for lithium-ion batteries , 2003 .

[136]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[137]  C. Arean,et al.  Electrochemical Reaction Between Lithium and β-Quartz GeO2 , 2004 .

[138]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[139]  J. Dahn,et al.  Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries , 2006 .

[140]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[141]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[142]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[143]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[144]  Young-Ugk Kim,et al.  The reaction mechanism of lithium insertion in vanadium tetraphosphide : A possible anode material in lithium-ion batteries , 2005 .

[145]  Yuping Wu,et al.  Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery , 2008 .

[146]  J. Dahn,et al.  The Reaction of Lithium with Sn‐Mn‐C Intermetallics Prepared by Mechanical Alloying , 2000 .

[147]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[148]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[149]  Bernard Simon,et al.  Lithium insertion into host materials: the key to success for Li ion batteries , 1999 .

[150]  C. C. Ahn,et al.  Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities , 2004 .

[151]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[152]  Ju-tang Sun,et al.  Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide , 2005 .

[153]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[154]  Seung M. Oh,et al.  Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries , 2005 .

[155]  N. Imanishi,et al.  Morphology-stable silicon-based composite for Li-intercalation , 2004 .

[156]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[157]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[158]  Seung M. Oh,et al.  Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries , 2005 .

[159]  J. Tarascon,et al.  An update on the reactivity of nanoparticles Co-based compounds towards Li , 2003 .

[160]  Jeff Dahn,et al.  On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium , 1999 .

[161]  Meilin Liu,et al.  Electrochemical properties of Li-Mg alloy electrodes for lithium batteries , 2001 .

[162]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[163]  C. Julien Lithium intercalated compounds: Charge transfer and related properties , 2003 .

[164]  C. S. Fuller,et al.  Mobility of Impurity Ions in Germanium and Silicon , 1953 .

[165]  X. Liu,et al.  High-capacity composite anodes with SnSb and Li2.6Co0.4N for solid polymer electrolyte cells , 2003 .

[166]  P. Kumta,et al.  Nanostructured Si / TiB2 Composite Anodes for Li-Ion Batteries , 2003 .

[167]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[168]  T. Brousse,et al.  Thin‐Film Crystalline SnO2‐Lithium Electrodes , 1998 .

[169]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[170]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[171]  Noriyuki Tamura,et al.  Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .

[172]  F. Favier,et al.  Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries , 2004 .

[173]  Z. Fu,et al.  Pulsed-Laser-Deposited Sn4P3 Electrodes for Lithium-Ion Batteries , 2009 .

[174]  T. Sakai,et al.  Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries , 2004 .

[175]  Yong‐Mook Kang,et al.  Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-Ion Batteries , 2007 .

[176]  Jaephil Cho,et al.  Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials , 2008 .

[177]  Yong‐Mook Kang,et al.  The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials , 2008 .

[178]  H. Sakaguchi,et al.  Anode behaviors of magnesium–antimony intermetallic compound for lithium secondary battery , 2003 .

[179]  J. Xie,et al.  Ex-situ XRD studies of CoSb3 compound as the anode material for lithium ion batteries , 2003 .

[180]  D. Wexler,et al.  Spray pyrolyzed PbO-Carbon nanocomposites as anode for lithium-ion batteries , 2006 .

[181]  J. Dahn,et al.  Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition , 2009 .

[182]  J. Tarascon,et al.  Electrochemical reactivity of Mg2Sn phases with metallic lithium , 2004 .

[183]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[184]  M. Morcrette,et al.  Redox-Induced Structural Change in Anode Materials Based on Tetrahedral (MPn4)x- Transition Metal Pnictides , 2004 .

[185]  J. Besenhard,et al.  Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries. Part II. Transport properties , 1983 .

[186]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[187]  P. Kumta,et al.  Sn/C composite anodes for Li-ion batteries , 2004 .

[188]  C. Deneke,et al.  An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO) , 2003 .

[189]  L. Nazar,et al.  A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry , 2002, Science.

[190]  M Stanley Whittingham,et al.  Inorganic nanomaterials for batteries. , 2008, Dalton transactions.

[191]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[192]  C. Villevieille,et al.  A new ternary Li4FeSb2 structure formed upon discharge of the FeSb2/Li cell , 2009 .

[193]  J. Dahn,et al.  Combinatorial Electrodeposition of Ternary Cu–Sn–Zn Alloys , 2005 .

[194]  H. Sakaguchi,et al.  Ce–Sn intermetallic compounds as new anode materials for rechargeable lithium batteries , 2003 .

[195]  Xiangming He,et al.  Preparation of Sn ∕ C Microsphere Composite Anode for Lithium-Ion Batteries via Carbothermal Reduction , 2006 .

[196]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[197]  John T. Vaughey,et al.  Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study , 2001 .

[198]  Sehee Lee,et al.  Electrochemical Reactivity of Ball-Milled MoO3-y as Anode Materials for Lithium-Ion Batteries , 2009 .

[199]  Yong-Mook Kang,et al.  Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. , 2007, Angewandte Chemie.

[200]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[201]  D. H. Bradhurst,et al.  Innovative nanosize lithium storage alloys with silica as active centre , 2000 .

[202]  J. Lee,et al.  One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage. , 2006, Angewandte Chemie.

[203]  Seokgwang Doo,et al.  Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials , 2009 .

[204]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[205]  E. Cairns,et al.  Magnesium silicide as a negative electrode material for lithium-ion batteries , 2002 .

[206]  Jingyu Sun,et al.  Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. , 2008, The journal of physical chemistry. B.

[207]  Cheol‐Min Park,et al.  A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries , 2009 .

[208]  Catia Arbizzani,et al.  On the lithiation–delithiation of tin and tin-based intermetallic compounds on carbon paper current collector-substrate , 2006 .

[209]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[210]  H. Takei,et al.  Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction , 2001 .

[211]  Seong-In Moon,et al.  A new SiO/C anode composition for lithium-ion battery , 2008 .

[212]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[213]  Cheol‐Min Park,et al.  Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries , 2008 .

[214]  Jingying Xie,et al.  SiOx-based anodes for secondary lithium batteries , 2002 .

[215]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[216]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[217]  Zhaolin Liu,et al.  Dispersion of Sn and SnO on carbon anodes , 2000 .

[218]  H. Sakaguchi,et al.  Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery , 2003 .

[219]  Z. Wen,et al.  Preparation and Electrochemical Performance of Spinel-Type Compounds Li4Al y Ti5 − y O 12 ( y = 0 , 0.10, 0.15, 0.25) , 2005 .

[220]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[221]  C. Labrugère,et al.  A new single molecular precursor route to fluorine-doped nanocrystalline tin oxide anodes for lithium batteries , 2001 .

[222]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[223]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[224]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[225]  J. Dahn,et al.  Combinatorial Study of Sn1 − x Co x ( 0 < x < 0.6 ) and [ Sn0.55Co0.45 ] 1 − y C y ( 0 < y < 0.5 ) Alloy Negative Electrode Materials for Li-Ion Batteries , 2006 .

[226]  Yongyao Xia,et al.  Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries , 2001 .

[227]  L. Nazar,et al.  Understanding the Nature of Low‐Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides , 1999 .

[228]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[229]  G. Taillades,et al.  Silver : High performance anode for thin film lithium ion batteries , 2004 .

[230]  D. Deng,et al.  Reversible storage of lithium in a rambutan-like tin-carbon electrode. , 2009, Angewandte Chemie.

[231]  J. J. Auborn,et al.  Lithium Intercalation Cells Without Metallic Lithium and , 1987 .

[232]  K. Edström,et al.  Structural transformations in intermetallic electrodes for lithium batteries : an in situ XRD study , 2003 .

[233]  L. Monconduit,et al.  Electrochemical reaction of lithium with CoP3 , 2002 .

[234]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[235]  Jaephil Cho,et al.  Observation of Reversible Pore Change in Mesoporous Tin Phosphate Anode Material during Li Alloying/Dealloying , 2006 .

[236]  Zhaolin Liu,et al.  Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites , 2002 .

[237]  K. Edström,et al.  Alternative anode materials for lithium-ion batteries: a study of Ag3Sb , 2003 .

[238]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[239]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[240]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[241]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[242]  Heon-Cheol Shin,et al.  Porous silicon negative electrodes for rechargeable lithium batteries , 2005 .

[243]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[244]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[245]  M. Thackeray,et al.  Intermetallic Insertion Electrodes with a Zinc Blende‐Type Structure for Li Batteries: A Study of Li x InSb ( 0 ≤ x ≤ 3 ) , 1999 .

[246]  Jae‐Hun Kim,et al.  Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries , 2005 .

[247]  J. Dahn,et al.  Lithium insertion in pyrolyzed siloxane polymers , 1994 .

[248]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[249]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[250]  H. Lee,et al.  Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .

[251]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[252]  L. Monconduit,et al.  The LixVPn4 Ternary Phases (Pn = P, As): Rigid Networks for Lithium Intercalation/Deintercalation , 2002 .

[253]  Cheol‐Min Park,et al.  Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries , 2009 .

[254]  J. Besenhard,et al.  SUB-MICROCRYSTALLINE SN AND SN-SNSB POWDERS AS LITHIUM STORAGE MATERIALS FOR LITHIUM-ION BATTERIES , 1999 .

[255]  P. Lippens,et al.  Study of Li insertion mechanisms in transition metal antimony compounds as negative electrodes for Li-ion battery , 2005 .

[256]  M. Thackeray,et al.  Substituted M x Cu6 − x Sn5 Compounds (M = Fe , Co, Ni, Zn) Designing Multicomponent Intermetallic Electrodes for Lithium Batteries , 2007 .

[257]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[258]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[259]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[260]  K. Abraham,et al.  Preparation and Characterization of Some Lithium Insertion Anodes for Secondary Lithium Batteries , 1990 .

[261]  Young-Ugk Kim,et al.  Enhancement of capacity and cycle-life of Sn4 + δP3 (0 ≤ δ ≤ 1) anode for lithium secondary batteries , 2005 .

[262]  J. Dahn,et al.  Structure and electrochemistry of LixMoO2 , 1987 .

[263]  Jun Chen,et al.  Novel Nano-silicon / Polypyrrole Composites for Lithium Storage , 2007 .

[264]  Cheol‐Min Park,et al.  Topotactic Li Insertion/Extraction in Hexagonal Vanadium Monophosphide , 2009 .

[265]  J. Tarascon,et al.  Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li , 2002 .

[266]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[267]  T. Osaka,et al.  In Situ Stress Transition Observations of Electrodeposited Sn-Based Anode Materials for Lithium-Ion Secondary Batteries , 2007 .

[268]  Min Gyu Kim,et al.  Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery , 2005 .

[269]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[270]  J. Tarascon,et al.  Vanadium diphosphides as negative electrodes for secondary Li-ion batteries , 2007 .

[271]  J. Dahn,et al.  Nanocomposites in the Sn–Mn–C system produced by mechanical alloying , 2000 .

[272]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[273]  C. Pérez-Vicente,et al.  On the Mechanism of the Electrochemical Reaction of Tin Phosphide with Lithium , 2006 .

[274]  Xiangming He,et al.  Preparation of Cu6Sn5-Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothermal Reduction of Oxides , 2006 .

[275]  NiSb2 as negative electrode for Li-ion batteries: An original conversion reaction , 2007 .

[276]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[277]  J. Lee,et al.  Improvement of Usable Capacity and Cyclability of Silicon-Based Anode Materials for Lithium Batteries by Sol-Gel Graphite Matrix , 2002 .

[278]  Young‐Jun Kim,et al.  Lithia formation mechanism in tin oxide anodes for lithium–ion rechargeable batteries , 2009 .

[279]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[280]  U. Varadaraju,et al.  Phosphides with zinc blende structure as anodes for lithium-ion batteries , 2006 .

[281]  Z. Wen,et al.  High capacity silicon/carbon composite anode materials for lithium ion batteries , 2003 .

[282]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[283]  U. V. Varadaraju,et al.  Lithium Intercalation into Nanocrystalline Brookite TiO2 , 2007 .

[284]  G. Cui,et al.  A Germanium–Carbon Nanocomposite Material for Lithium Batteries , 2008 .

[285]  Seung M. Oh,et al.  Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries , 2009 .

[286]  J. Morales,et al.  Electrochemical behaviour of SnO2 doped with boron and indium in anodes for lithium secondary batteries , 1999 .

[287]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[288]  Cheol‐Min Park,et al.  Tetragonal Zinc Diphosphide and Its Nanocomposite as an Anode for Lithium Secondary Batteries , 2008 .

[289]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[290]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[291]  Huakun Liu,et al.  Characterization of Nanocrystalline Si-MCMB Composite Anode Materials , 2004 .

[292]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[293]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[294]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[295]  Lei Chen,et al.  Electrochemical characteristics of Sn1−xSixO2 as anode for lithium-ion batteries , 1999 .

[296]  Cheol‐Min Park,et al.  Quasi‐Intercalation and Facile Amorphization in Layered ZnSb for Li‐Ion Batteries , 2010, Advanced materials.

[297]  J. Tarascon,et al.  On the Electrochemical Reactivity Mechanism of CoSb3 vs. Lithium , 2003 .

[298]  J. Jumas,et al.  Electrochemical reaction of lithium with the CoSb3 skutterudite , 1999 .

[299]  U. Varadaraju,et al.  Electrochemical reaction of lithium with Zn3P2 , 2005 .