Pattern recognition in high energy physics with neural networks

Artificial neural networks (ANN) are introduced in the context of analyzing particle physics data. The power of these techniques are demonstrated in applications ranging from off-line jet identification to tracking. Among other things very successful results are presented for b-quark identification using hadronic information only. Also a novel approach for tracking using deformable templates is shown.

[1]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[2]  Richard Durbin,et al.  An analogue approach to the travelling salesman problem using an elastic net method , 1987, Nature.

[3]  C. Peterson Track finding with neural networks , 1989 .

[4]  B. Webber,et al.  Monte Carlo simulation of general hard processes with coherent QCD radiation , 1988 .

[5]  Thorsteinn S. Rögnvaldsson,et al.  Self-organizing networks for extracting jet features , 1991 .

[6]  Thorsteinn S. Rögnvaldsson,et al.  Using neural networks to identify jets , 1991 .

[7]  M. Gyulassy,et al.  Elastic tracking and neural network algorithms for complex pattern recognition , 1991 .

[8]  I. G. Knowles,et al.  Spin correlations in parton-parton scattering , 1988 .

[9]  F. Bedeschi,et al.  Neural networks for triggering , 1990 .

[10]  Carsten Peterson,et al.  Track finding with deformable templates , 1991 .

[11]  Fodor,et al.  Quark- and gluon-jet separation using neural networks. , 1991, Physical review. D, Particles and fields.

[12]  Peterson,et al.  Finding gluon jets with a neural trigger. , 1990, Physical review letters.

[13]  J. Incandela,et al.  Measurement of the transverse momentum distributions ofW andZ bosons at the CERN $$\bar pp$$ collider , 1990 .

[14]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[15]  J. Jacobsen,et al.  Using neural networks with jet shapes to identify b jets in e+e− interactions , 1991 .

[16]  K. Meier,et al.  Using neural networks to identify jets in hadron hadron collisions , 1990 .

[17]  Carsten Peterson,et al.  Parallel Distributed Approaches to Combinatorial Optimization: Benchmark Studies on Traveling Salesman Problem , 1990, Neural Computation.

[18]  Bruce Denby,et al.  Neural networks and cellular automata in experimental high energy physics , 1988 .

[19]  Alan L. Yuille,et al.  Particle tracking by deformable templates , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[20]  Torbjörn Sjöstrand,et al.  The Lund Monte Carlo for Hadronic Processes: Pythia Version 4.8 , 1987 .

[21]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[22]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[23]  Carsten Peterson,et al.  Pattern recognition in high energy physics with artificial neural networks - JETNET 2.0 , 1992 .

[24]  Carsten Peterson,et al.  A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..

[25]  A. Yuille,et al.  Track finding with deformable templates — the elastic arms approach , 1992 .

[26]  Thorsteinn S. Rögnvaldsson,et al.  Mass reconstruction with a neural network , 1992 .

[27]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .