The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1α domains bind CD36. Here we describe the CD36-binding portion of a CIDR1α domain, MC179, as a bundle of three α-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1α three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1α and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1α domains are approximately 100 residues larger and that CIDR1α domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the molecular basis of cytoadherence.

[1]  Peter Preiser,et al.  The C-Terminal Segment of the Cysteine-Rich Interdomain of Plasmodium falciparum Erythrocyte Membrane Protein 1 Determines CD36 Binding and Elicits Antibodies That Inhibit Adhesion of Parasite-Infected Erythrocytes , 2008, Infection and Immunity.

[2]  Ole Lund,et al.  Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA , 2008, PLoS pathogens.

[3]  Joseph D. Smith,et al.  Mapping a common interaction site used by Plasmodium falciparum Duffy binding‐like domains to bind diverse host receptors , 2007, Molecular microbiology.

[4]  M. Wahlgren,et al.  PfEMP1-DBL1α amino acid motifs in severe disease states of Plasmodium falciparum malaria , 2007, Proceedings of the National Academy of Sciences.

[5]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[6]  B. Gamain,et al.  Disruption of Var2csa Gene Impairs Placental Malaria Associated Adhesion Phenotype , 2007, PloS one.

[7]  G. McVean,et al.  Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum , 2007, PLoS pathogens.

[8]  Gautam Aggarwal,et al.  Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates , 2007, BMC Genomics.

[9]  Ole Lund,et al.  Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration , 2006, PLoS pathogens.

[10]  T. J. Templeton,et al.  Variant antigen gene expression in malaria , 2006, Cellular microbiology.

[11]  Mark A DePristo,et al.  On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. , 2006, Gene.

[12]  Philip Awadalla,et al.  Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. , 2006, Molecular and biochemical parasitology.

[13]  Joseph D. Smith,et al.  A family affair: var genes, PfEMP1 binding, and malaria disease. , 2006, Current opinion in microbiology.

[14]  B. Keegan,et al.  Immunization of Aotus monkeys with recombinant cysteine-rich interdomain region 1 alpha protects against severe disease during Plasmodium falciparum reinfection. , 2006, The Journal of infectious diseases.

[15]  C. Chitnis,et al.  Immune responses to asexual blood-stages of malaria parasites. , 2006, Current molecular medicine.

[16]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[17]  Hassan Belrhali,et al.  Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain , 2006, Nature.

[18]  K. Marsh,et al.  Regulation of immune response by Plasmodium‐infected red blood cells , 2005, Parasite immunology.

[19]  S. Ralph,et al.  The epigenetic control of antigenic variation in Plasmodium falciparum. , 2005, Current opinion in microbiology.

[20]  Leemor Joshua-Tor,et al.  Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum , 2005, Cell.

[21]  Priyabrata Pattnaik,et al.  Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites. , 2005, Blood.

[22]  C. Deprez,et al.  Solution structure of the E.coli TolA C-terminal domain reveals conformational changes upon binding to the phage g3p N-terminal domain. , 2005, Journal of molecular biology.

[23]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[24]  Joseph D. Smith,et al.  Functional interdependence of the DBLbeta domain and c2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. , 2004, Molecular and biochemical parasitology.

[25]  M. Wahlgren,et al.  Molecular aspects of malaria pathogenesis. , 2004, FEMS immunology and medical microbiology.

[26]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[27]  C. Chitnis,et al.  Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. , 2004, Molecular and biochemical parasitology.

[28]  Todd G. Smith,et al.  CD36 and malaria: friends or foes? , 2003, Trends in parasitology.

[29]  T. Theander,et al.  Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions , 2003, Malaria Journal.

[30]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[31]  Joseph D. Smith,et al.  Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome , 2003, Molecular microbiology.

[32]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[33]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[34]  B. Gamain,et al.  Definition of the minimal domain of CIDR1alpha of Plasmodium falciparum PfEMP1 for binding CD36. , 2002, Molecular and biochemical parasitology.

[35]  B. Gamain,et al.  Immunization of Aotus monkeys with a functional domain of the Plasmodium falciparum variant antigen induces protection against a lethal parasite line , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[37]  Kevin Marsh,et al.  The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. , 2002, Trends in microbiology.

[38]  B. Gamain,et al.  Modifications in the CD36 binding domain of the Plasmodium falciparum variant antigen are responsible for the inability of chondroitin sulfate A adherent parasites to bind CD36. , 2001, Blood.

[39]  B. Gamain,et al.  The surface variant antigens of Plasmodium falciparum contain cross-reactive epitopes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. Gamain,et al.  Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. , 2000, Molecular and biochemical parasitology.

[41]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[42]  Joseph D. Smith,et al.  Correction for Smith et al., Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: A parasite adhesion trait implicated in cerebral malaria , 2000, Proceedings of the National Academy of Sciences.

[43]  A. Craig,et al.  Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. , 1998, Molecular and biochemical parasitology.

[44]  R. Coppel,et al.  A recombinant peptide based on Pf EMP‐1 blocks and reverses adhesion of malaria‐infected red blood cells to CD36 under flow , 1998, Molecular microbiology.

[45]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[46]  H. Singh,et al.  Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. , 1997, Blood.

[47]  A. Craig,et al.  Receptor-specific adhesion and clinical disease in Plasmodium falciparum. , 1997, The American journal of tropical medicine and hygiene.

[48]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[49]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[50]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[51]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[52]  John C. Wootton,et al.  Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures , 1994, Comput. Chem..

[53]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[54]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[55]  Kevin Marsh,et al.  Rapid switching to multiple antigenic and adhesive phenotypes in malaria , 1992, Nature.

[56]  J. Barnwell,et al.  A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. , 1989, The Journal of clinical investigation.

[57]  C. Ockenhouse,et al.  Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro. , 1989, The Journal of clinical investigation.

[58]  Brian Seed,et al.  CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes , 1989, Cell.

[59]  C. Ockenhouse,et al.  Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. , 1989, Science.

[60]  R. Degowin,et al.  Drug Resistance of a Strain of Plasmodium Falciparum from Malaya , 1965 .

[61]  M. Wahlgren,et al.  PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Kubes,et al.  Recombinant PfEMP1 peptide inhibits and reverses cytoadherence of clinical Plasmodium falciparum isolates in vivo. , 2003, Blood.

[63]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[64]  S. Kyes,et al.  Antigenic variation at the infected red cell surface in malaria. , 2001, Annual review of microbiology.

[65]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.