Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption.

The interband cascade laser differs from any other class of semiconductor laser, conventional or cascaded, in that most of the carriers producing population inversion are generated internally, at semimetallic interfaces within each stage of the active region. Here we present simulations demonstrating that all previous interband cascade laser performance has suffered from a significant imbalance of electron and hole densities in the active wells. We further confirm experimentally that correcting this imbalance with relatively heavy n-type doping in the electron injectors substantially reduces the threshold current and power densities relative to all earlier devices. At room temperature, the redesigned devices require nearly two orders of magnitude less input power to operate in continuous-wave mode than the quantum cascade laser. The interband cascade laser is consequently the most attractive option for gas sensing and other spectroscopic applications requiring low output power and minimum heat dissipation at wavelengths extending from 3 μm to beyond 6 μm.

[1]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[2]  S. Ide,et al.  Low threshold current density 1.3-/spl mu/m strained-layer quantum-well lasers using n-type modulation doping , 1994, IEEE Photonics Technology Letters.

[3]  William W. Bewley,et al.  Mid-infrared interband cascade lasers operating at ambient temperatures , 2009 .

[4]  William W. Bewley,et al.  Lifetimes and Auger coefficients in type-II W interband cascade lasers , 2008 .

[5]  K. Uomi,et al.  Dependence of threshold current density, carrier lifetime and optical gain coefficient on donor concentration in 1.3 [micro sign]m n-type modulation-doped strained multiquantum well lasers , 1996 .

[6]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[7]  K. Fujita,et al.  Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons , 2008, IEEE Journal of Quantum Electronics.

[8]  Rui Q. Yang,et al.  Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .

[9]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[10]  William W. Bewley,et al.  Ridge-width dependence of midinfrared interband cascade laser characteristics , 2010 .

[11]  S. Shank,et al.  Single quantum well GaAs/AlGaAs separate confinement heterostructure lasers with n‐type modulation doped cores , 1992 .

[12]  Manijeh Razeghi,et al.  Quantum cascade lasers that emit more light than heat , 2010 .

[13]  Manijeh Razeghi,et al.  Optimizing facet coating of quantum cascade lasers for low power consumption , 2011 .

[14]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[15]  Jacob B. Khurgin,et al.  Highly power-efficient quantum cascade lasers , 2010 .

[16]  William W. Bewley,et al.  Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature , 2009 .

[17]  Jerry R. Meyer,et al.  Special Section Guest Editorial: Quantum and Interband Cascade Lasers , 2010 .

[18]  S. Borri,et al.  Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. , 2011, Optics express.

[19]  Kerry J. Vahala,et al.  Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions , 1988 .

[20]  Jérôme Faist,et al.  Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits , 2007 .

[21]  T. F. Boggess,et al.  Auger recombination in narrow-gap semiconductor superlattices incorporating antimony , 2002 .

[22]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[23]  I. Vurgaftman,et al.  High-power, narrow-ridge, mid-infrared interband cascade lasers , 2007 .

[24]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .

[25]  Chul Soo Kim,et al.  Mid-IR Type-II Interband Cascade Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[27]  William W. Bewley,et al.  cw midinfrared W diode and interband cascade lasers , 2006 .

[28]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[29]  A. Kasukawa,et al.  1.3-/spl mu/m InAsP modulation-doped MQW lasers , 2000, IEEE Journal of Quantum Electronics.

[30]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[31]  Kazuhisa Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory , 1990 .

[32]  K. Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. : II. Experiment , 1990 .