Benefits of V2V Communication for Autonomous and Connected Vehicles

In this paper, we investigate the benefits of vehicle-to-vehicle (V2V) communication for autonomous vehicles and provide results on how V2V information helps reduce employable time headway in the presence of parasitic lags. For a string of vehicles adopting a constant time headway policy and availing the on-board information of predecessor’s vehicle position and velocity, the minimum employable time headway (<inline-formula> <tex-math notation="LaTeX">$h_{\min }$ </tex-math></inline-formula>) must be lower bounded by <inline-formula> <tex-math notation="LaTeX">$2\tau _{0}$ </tex-math></inline-formula> for string stability, where <inline-formula> <tex-math notation="LaTeX">$\tau _{0}$ </tex-math></inline-formula> is the maximum parasitic actuation lag. In this paper, we quantify the benefits of using V2V communication in terms of a reduction in the employable time headway: 1) If the position and velocity information of <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> immediately preceding vehicles is used, then <inline-formula> <tex-math notation="LaTeX">$h_{\min }$ </tex-math></inline-formula> can be reduced to <inline-formula> <tex-math notation="LaTeX">${4\tau _{0}}/{(1+r)}$ </tex-math></inline-formula>; 2) furthermore, if the acceleration of ‘<inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>’ immediately preceding vehicles is used, then <inline-formula> <tex-math notation="LaTeX">$h_{\min }$ </tex-math></inline-formula> can be reduced to <inline-formula> <tex-math notation="LaTeX">${2\tau _{0}}/{(1+r)}$ </tex-math></inline-formula>; and 3) if the position, velocity, and acceleration of the immediate and the <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>-th predecessors are used, then <inline-formula> <tex-math notation="LaTeX">$h_{\min } \ge {2\tau _{0}}/{(1+r)}$ </tex-math></inline-formula>. Note that cases <xref rid="deqn2" ref-type="disp-formula">(2)</xref> and <xref rid="deqn3" ref-type="disp-formula">(3)</xref> provide the same lower bound on the minimum employable time headway; however, case <xref rid="deqn3" ref-type="disp-formula">(3)</xref> requires much less communicated information.

[1]  Petros A. Ioannou,et al.  A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1 , 1994 .

[2]  Christopher Nowakowski,et al.  Operational Concepts for Truck Cooperative Adaptive Cruise Control (CACC) Maneuvers , 2016 .

[3]  Eric Feron,et al.  Preventing Automotive Pileup Crashes in Mixed-Communication Environments , 2009, IEEE Transactions on Intelligent Transportation Systems.

[4]  Pravin Varaiya,et al.  Effect of adaptive and cooperative adaptive cruise control on throughput of signalized arterials , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[5]  S. Darbha,et al.  Information flow and its relation to stability of the motion of vehicles in a rigid formation , 2005, IEEE Transactions on Automatic Control.

[6]  Swaroop Darbha,et al.  A Methodology for Assessing the Benefits of Coordination on the Safety of Vehicles , 2012, J. Intell. Transp. Syst..

[7]  Swaroop Darbha,et al.  Limitations of employing undirected information flow graphs for the maintenance of rigid formations for heterogeneous vehicles , 2010 .

[8]  Geert J. Heijenk,et al.  Connect & Drive: design and evaluation of cooperative adaptive cruise control for congestion reduction , 2011 .

[9]  D. Swaroop,et al.  A review of constant time headway policy for automatic vehicle following , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[10]  Nathan van de Wouw,et al.  Cooperative Adaptive Cruise Control: Network-Aware Analysis of String Stability , 2014, IEEE Transactions on Intelligent Transportation Systems.

[11]  Hwasoo Yeo,et al.  A Study on the Traffic Predictive Cruise Control Strategy With Downstream Traffic Information , 2016, IEEE Transactions on Intelligent Transportation Systems.

[12]  Maarten Steinbuch,et al.  String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach , 2010, IEEE Transactions on Vehicular Technology.

[13]  G. Karagiannis,et al.  Impact of packet loss on CACC string stability performance , 2011, 2011 11th International Conference on ITS Telecommunications.

[14]  Gerhard Fettweis,et al.  Vehicular communication performance in convoys of automated vehicles , 2016, 2016 IEEE International Conference on Communications (ICC).

[15]  Gábor Orosz,et al.  Stability of Connected Vehicle Platoons With Delayed Acceleration Feedback , 2013 .

[16]  Jianshan Zhou,et al.  Modeling chain collisions in vehicular networks with variable penetration rates , 2016 .

[17]  Deborah Thompson,et al.  Operational Concepts for Truck Maneuvers with Cooperative Adaptive Cruise Control , 2016 .

[18]  D. Swaroop,et al.  String Stability Of Interconnected Systems: An Application To Platooning In Automated Highway Systems , 1997 .

[19]  Petros A. Ioannou,et al.  Autonomous intelligent cruise control , 1993 .

[20]  Chang-Jia Fang,et al.  Nonovershooting and monotone nondecreasing step responses of a third-order SISO linear system , 1997, IEEE Trans. Autom. Control..

[21]  Rajesh Rajamani,et al.  Semi-autonomous adaptive cruise control systems , 2002, IEEE Trans. Veh. Technol..

[22]  Gábor Orosz,et al.  Dynamics of connected vehicle systems with delayed acceleration feedback , 2014 .

[23]  Swaroop Darbha,et al.  Vehicle Platooning with Multiple Vehicle Look-ahead Information , 2017 .

[24]  D. Swaroop,et al.  Integrated lateral and longitudinal vehicle control for an emergency lane change manoeuvre design , 1999 .

[25]  Jennie Lioris,et al.  Platoons of connected vehicles can double throughput in urban roads , 2015, 1511.00775.