Numerical study for fractional model of non-linear predator-prey biological population dynamical system

The key objective of the present paper is to propose a numerical scheme based on the homotopy analysis transform technique to analyze the time-fractional nonlinear predator-prey population model. The population model is coupled fractional order nonlinear partial differential equations often employed to narrate the dynamics of biological systems in which two species interact, first is a predator and the second is a prey. The proposed scheme provides the series solution with great freedom and flexibility by choosing appropriate parameters. The convergence of results is free from small or large parameters. Three examples are discussed to demonstrate the correctness and efficiency of the used computational approach.

[1]  Baogui Xin,et al.  Numerical Solutions of a Fractional Predator-Prey System , 2011 .

[2]  Stephen A. Gourley,et al.  A predator-prey reaction-diffusion system with nonlocal effects , 1996 .

[3]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[4]  Dumitru Baleanu,et al.  Numerical Computation of a Fractional Model of Differential-Difference Equation , 2016 .

[5]  Jordan Hristov,et al.  Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s Kernel to the Caputo-Fabrizio time-fractional derivative , 2016 .

[6]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[7]  Najeeb Alam Khan,et al.  Approximate Solution of Time-Fractional Chemical Engineering Equations: A Comparative Study , 2010 .

[8]  Devendra Kumar,et al.  A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow , 2016, Entropy.

[9]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[10]  S. Liao,et al.  Solving solitary waves with discontinuity by means of the homotopy analysis method , 2005 .

[11]  K. Cheung,et al.  Homotopy analysis of nonlinear progressive waves in deep water , 2003 .

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  Luis Vázquez Martínez,et al.  Fractional dynamics of populations , 2011, Appl. Math. Comput..

[14]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[15]  Lina Song,et al.  Application of homotopy analysis method to fractional KdV–Burgers–Kuramoto equation , 2007 .

[16]  Ravi P. Agarwal,et al.  A modified numerical scheme and convergence analysis for fractional model of Lienard's equation , 2017, J. Comput. Appl. Math..

[17]  Devendra Kumar,et al.  A hybrid computational approach for Jeffery–Hamel flow in non-parallel walls , 2017, Neural Computing and Applications.

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[20]  DUMITRU BALEANU,et al.  A FRACTIONAL MODEL OF CONVECTIVE RADIAL FINS WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY , 2017 .

[21]  T. Malthus Essay on the Principle of Population , 2001 .

[22]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[23]  Shijun Liao,et al.  On the homotopy analysis method for nonlinear problems , 2004, Appl. Math. Comput..

[24]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[25]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[26]  S. Abbasbandy Homotopy analysis method for the Kawahara equation , 2010 .

[27]  Juan J. Nieto,et al.  Some new existence results for fractional differential inclusions with boundary conditions , 2009, Math. Comput. Model..

[28]  Daniela Fischer Differential Equations Dynamical Systems And An Introduction To Chaos , 2016 .

[29]  Devendra Kumar,et al.  An efficient analytical technique for fractional model of vibration equation , 2017 .

[30]  Iqtadar Hussain,et al.  A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on a semi infinite domain , 2012, Math. Comput. Model..

[31]  Saad Zagloul Rida,et al.  GENERAL: Exact Solutions of Fractional-Order Biological Population Model , 2009 .

[32]  Abdon Atangana Exact Solutions Fractional Heat-Like and Wave-Like Equations with Variable Coefficients , 2013 .

[33]  Rajeev,et al.  A Fractional Predator-Prey Model and its Solution , 2009 .

[34]  Sergei Petrovskii,et al.  An exact solution of a diffusive predator–prey system , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[36]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[37]  S. Liao An approximate solution technique not depending on small parameters: A special example , 1995 .

[38]  Tewfik Sari,et al.  Dynamic transcritical bifurcations in a class of slow–fast predator–prey models , 2009 .

[39]  J. A. Tenreiro Machado,et al.  A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Application to the Modelling of the Steady Heat Flow , 2015, 1601.01623.