New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes.

The Lecanoromycetes includes most of the lichen-forming fungal species (> 13500) and is therefore one of the most diverse class of all Fungi in terms of phenotypic complexity. We report phylogenetic relationships within the Lecanoromycetes resulting from Bayesian and maximum likelihood analyses with complementary posterior probabilities and bootstrap support values based on three combined multilocus datasets using a supermatrix approach. Nine of 10 orders and 43 of 64 families currently recognized in Eriksson's classification of the Lecanoromycetes (Outline of Ascomycota--2006 Myconet 12:1-82) were represented in this sampling. Our analyses strongly support the Acarosporomycetidae and Ostropomycetidae as monophyletic, whereas the delimitation of the largest subclass, the Lecanoromycetidae, remains uncertain. Independent of future delimitation of the Lecanoromycetidae, the Rhizocarpaceae and Umbilicariaceae should be elevated to the ordinal level. This study shows that recent classifications include several nonmonophyletic taxa at different ranks that need to be recircumscribed. Our phylogenies confirm that ascus morphology cannot be applied consistently to shape the classification of lichen-forming fungi. The increasing amount of missing data associated with the progressive addition of taxa resulted in some cases in the expected loss of support, but we also observed an improvement in statistical support for many internodes. We conclude that a phylogenetic synthesis for a chosen taxonomic group should include a comprehensive assessment of phylogenetic confidence based on multiple estimates using different methods and on a progressive taxon sampling with an increasing number of taxa, even if it involves an increasing amount of missing data.

[1]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[2]  H. Lumbsch,et al.  Molecular systematics supports the recognition of an additional order of Ascomycota: the Agyriales , 2001 .

[3]  M. Hyvärinen,et al.  REMOVAL OF LICHEN SECONDARY METABOLITES AFFECTS FOOD CHOICE AND SURVIVAL OF LICHENIVOROUS MOTH LARVAE , 2005 .

[4]  Richard H. Ree,et al.  Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. , 2006, Molecular phylogenetics and evolution.

[5]  Bernhard Marbach,et al.  Corticole und lignicole Arten der Flechtengattung Buellia sensu lato in den Subtropen und Tropen , 2000 .

[6]  Ester Gaya i Bellés Revisió morfològica i molecular dels tàxons lobulats del gènere "Caloplaca" ("Teloschistaceae", líquens), amb especial èmfasi en el grup de "C. saxicola." , 2006 .

[7]  H. Lumbsch How objective are genera in euascomycetes , 2002 .

[8]  F. Lutzoni,et al.  Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. , 2004, American journal of botany.

[9]  S. Ekman,et al.  Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon , 2002 .

[10]  H. Lumbsch,et al.  Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. , 2004, Molecular phylogenetics and evolution.

[11]  F. Kauff,et al.  Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). , 2007, Molecular phylogenetics and evolution.

[12]  P. Diederich,et al.  Lichenicolous Fungi: Interactions, Evolution, and Biodiversity , 2003 .

[13]  S. Stenroos,et al.  Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences , 2004, Mycological Progress.

[14]  J. William Ahwood,et al.  CLASSIFICATION , 1931, Foundations of Familiar Language.

[15]  J. Hafellner Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae , 1984 .

[16]  F. Kauff,et al.  Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. , 2002, Molecular phylogenetics and evolution.

[17]  M. Letrouit-Galinou,et al.  Sur l'origine phylogénétique et l'évolution des Ascomycètes des Lichens , 1968 .

[18]  E. S. Luttrell The Ascostromatic Ascomycetes , 1955 .

[19]  C. Culberson Biogenetic Relationships of the Lichen Substances in the Framework of Systematics , 1986 .

[20]  H. Lumbsch,et al.  Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. , 2005, Mycological research.

[21]  E. Timdal A monograph of the genus Toninia (Lecideaceae, Ascomycetes) , 1991 .

[22]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[23]  G. Natho Henssen, Aino & Jahns, Hans‐Martin, Lichenes. Eine Einführung in die Flechtenkunde. XII + 467 Seiten, 142 Abb., 8 Tab. Georg Thieme Verlag Stuttgart 1974. Preis: 19,80 DM , 1975 .

[24]  D. Hawksworth,et al.  A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales) , 2004 .

[25]  A. Tehler,et al.  Evolutionary Trends in the Physciaceae , 2001, The Lichenologist.

[26]  J. Hafellner Acarospora und Pleopsidum. Zwei lichenisierte Ascomycetengattungen (Lecanorales) mit zahlreichen Konvergenzen , 1993 .

[27]  H. Lumbsch,et al.  Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens , 2005, Mycologia.

[28]  G. Mueller,et al.  Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). , 2004, Molecular phylogenetics and evolution.

[29]  R. Lücking,et al.  Phylogeny and systematics of the lichen family Gomphillaceae (Ostropales) inferred from cladistic analysis of phenotype data , 2005, The Lichenologist.

[30]  G. Helms,et al.  Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters , 2003, Mycologia.

[31]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[32]  G. Rambold,et al.  The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny , 2004, Mycological Progress.

[33]  D. Reynolds Ascomycete systematics : the Luttrellian concept , 1982 .

[34]  David M. Geiser,et al.  Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. , 2006, Mycologia.

[35]  S. Ekman,et al.  Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. , 2005, Mycological research.

[36]  D. Hawksworth,et al.  Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. , 2004, Mycological research.

[37]  R. A. Reis,et al.  Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. , 2005, FEMS microbiology ecology.

[38]  S. Stenroos,et al.  SSU rDNA phylogeny of cladoniiform lichens. , 1998, American journal of botany.

[39]  G. Rambold,et al.  Myco‐photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida , 2002 .

[40]  O. Eriksson The families of bitunicate ascomycetes , 1981 .

[41]  J. Lawrey Biological Role of Lichen Substances , 1986 .

[42]  A. Nordin,et al.  Lichen-forming and lichenicolous fungi of Fennoscandia , 2004 .

[43]  H. T. Lumbsch,et al.  Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). , 2005, Mycologia.

[44]  P. Rundel The ecological role of secondary lichen substances , 1978 .

[45]  R. Lücking,et al.  Phylogenetic position of the genera Nadvornikia and Pyrgillus (Ascomycota) based on molecular data , 2004 .

[46]  J. Elix Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae , 1993 .

[47]  T. Friedl,et al.  Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies , 1998 .

[48]  B. Hall,et al.  Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Oscar Blanco,et al.  The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens , 2001 .

[50]  L. Tibell A reappraisal of the taxonomy of Caliciales , 1984 .

[51]  H. Lumbsch,et al.  Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. , 2004, Molecular phylogenetics and evolution.

[52]  R. Honegger The Ascus Apex in Lichenized Fungi II. The Rhizocarpon-Type , 1980, The Lichenologist.

[53]  F. Lutzoni,et al.  A generic redelimitation of the Ionaspis-Hymenelia complex (lichenized Ascomycotina) , 1995 .

[54]  R. Lücking,et al.  Phylogenetic relationships of Gomphillaceae and Asterothyriaceae: evidence from a combined Bayesian analysis of nuclear and mitochondrial sequences , 2004, Mycologia.

[55]  M. Grube,et al.  The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. , 2004, Mycological research.

[56]  G. Rambold,et al.  The inter-lecanoralean associations , 1994 .

[57]  S. Ekman Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota) , 2001 .

[58]  M. Grube,et al.  Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae , 2002 .

[59]  S. Ekman,et al.  Phylogeny of the Micareaceae inferred from nrSSU DNA sequences , 2004, The Lichenologist.

[60]  W. L. Culberson,et al.  Secondary Metabolites as a Tool in Ascomycete Systematics: Lichenized Fungi , 1994 .

[61]  John J. Wiens,et al.  Missing data and the design of phylogenetic analyses , 2006, J. Biomed. Informatics.

[62]  T. Friedl,et al.  Photobionts in Lichens: Possible Indicators of Phylogenetic Relationships? , 1998 .

[63]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[64]  F. Lutzoni,et al.  Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae). , 2003, Mycological research.

[65]  D. Reynolds The bitunicate ascus paradigm , 2008, The Botanical Review.

[66]  F. Lutzoni,et al.  Phylogenetic study of Fulgensia and allied Caloplaca and Xanthoria species (Teloschistaceae, lichen-forming ascomycota). , 2003, American journal of botany.

[67]  K. Solhaug,et al.  Parietin, a photoprotective secondary product of the lichen Xanthoria parietina , 1996, Oecologia.

[68]  F. Lutzoni,et al.  Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. , 2004, Molecular phylogenetics and evolution.

[69]  G. Rambold,et al.  A comparison of ITS and LSU nrDNA phylogenies of Fulgensia (Teloschistaceae, Lecanorales), a genus of lichenised ascomycetes , 2000 .

[70]  J. Rikkinen,et al.  What's behind the Pretty Colours: A Study on the Photobiology of Lichens , 1996 .