제어상자를 이용한 단순 신경망의 개선된 학습과정

본 연구에서는 시계열자료를 예측하기 위해 적용한 n×n×1 신경망 구조에서 초기값의 시각적인 선택을 통한 개선된 학습과정을 제안한다. 적용된 Easton[1]의 제어상자는 시각적인 면과 실용적인 적용측면에서 다차원 구조를 논의하기에는 제한적이지만, 적은 개수의 은닉노드를 갖는 단순한 신경망구조에서는 초기 가중값들의 동적인 선택을 통하여 가능한 빨리 효과적인 학습이 이루어질 수 있게 할 수 있다. 신경망 학습의 오차 판단기준은 기존의 평균제곱오차(MSE)를 고려한다. 실증연구에는 모의생성된 ARMA(1,0) 자료와 담배생산량 자료를 이용한다.