Remarks on Numerical Experiments of the Allen-Cahn Equations with Constraint via Yosida Approximation

We consider a one-dimensional Allen-Cahn equation with constraint from the viewpoint of numerical analysis. The constraint is provided by the subdifferential of the indicator function on the closed interval, which is the multivalued function. Therefore, it is very difficult to perform a numerical experiment of our equation. In this paper we approximate the constraint by the Yosida approximation. Then, we study the approximating system of the original model numerically. In particular, we give the criteria for the standard forward Euler method to give the stable numerical experiments of the approximating equation. Moreover, we provide the numerical experiments of the approximating equation.

[1]  W. Marsden I and J , 2012 .

[2]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[3]  P. Fife Dynamics of Internal Layers and Diffusive Interfaces , 1988 .

[4]  M. H. Farshbaf-Shaker,et al.  Lagrange multiplier and singular limit of double obstacle problems for the Allen–Cahn equation with constraint , 2015 .

[5]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[6]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[7]  Ken Shirakawa,et al.  OPTIMAL CONTROL OF A SINGULAR DIFFUSION EQUATION WITH CONSTRAINT , 2007 .

[8]  Xiaofeng Yang,et al.  Error analysis of stabilized semi-implicit method of Allen-Cahnequation , 2009 .

[9]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[10]  Haim Brezis,et al.  Perturbations of nonlinear maximal monotone sets in banach space , 1970 .

[11]  Charles M. Elliott,et al.  Asymptotics for a parabolic double obstacle problem , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[13]  Ken Shirakawa,et al.  Optimal control problem for allen-cahn type equation associated with total variation energy , 2011 .

[14]  Nobuyuki Kenmochi,et al.  CHAPTER 4 - Monotonicity and Compactness Methods for Nonlinear Variational Inequalities , 2007 .

[15]  Jian Zhang,et al.  Numerical Studies of Discrete Approximations to the Allen--Cahn Equation in the Sharp Interface Limit , 2009, SIAM J. Sci. Comput..

[16]  Mitsuharu Ôtani,et al.  Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems , 1982 .

[17]  Nobuyuki Kenmochi,et al.  Attractors of nonlinear evolution systems generated bytime-dependent subdifferentials in Hilbert spaces , 1998 .

[18]  Yoshihiro Tonegawa,et al.  Integrality of varifolds in the singular limit of reaction-diffusion equations , 2003 .

[19]  Takeshi Ohtsuka,et al.  Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials , 2008, Asymptot. Anal..

[20]  T. Tang,et al.  Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation , 2013 .

[21]  Masato Kimura,et al.  Stability analysis for Allen–Cahn type equation associated with the total variation energy , 2005 .

[22]  T. Fukao,et al.  Singular limit of Allen--Cahn equation with constraints and its Lagrange multiplier , 2014 .

[23]  大谷 光春 Non-monotone perturbations for nonlinear parabolic equations associated with subdifferential operators = 劣微分作用素の付随した非線型放物型方程式に対する非単調作用素の摂動 , 1978 .

[24]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  H. Attouch Variational convergence for functions and operators , 1984 .

[27]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[28]  Lavinia Sarbu,et al.  Primal‐dual active set methods for Allen–Cahn variational inequalities with nonlocal constraints , 2010 .