On Artin's Primitive Root Conjecture for Function Fields over $\mathbb{F}_{q}$

In 1927, E. Artin proposed a conjecture for the natural density of primes $p$ for which $g$ generates $(\mathbb{Z}/p\mathbb{Z})^\times$. By carefully observing numerical deviations from Artin's originally predicted asymptotic, Derrick and Emma Lehmer (1957) identified the need for an additional correction factor; leading to a modified conjecture which was eventually proved to be correct by Hooley (1967) under the assumption of the generalised Riemann hypothesis. An appropriate analogue of Artin's primitive root conjecture may moreover be formulated for an algebraic function field $K$ of $r$ variables over $\mathbb{F}_{q}$. Relying on a soon to be established theorem of Weil (1948), Bilharz (1937) provided a proof in the particular case that $K$ is a global function field (i.e. $r=1$), which is correct under the assumption that $g \in K$ is a $\textit{geometric}$ element. Under these same assumptions, Pappalardi and Shparlinski (1995) established a quantitative version of Bilharz's result. In this paper we build upon these works by both generalizing to function fields in $r$ variables over $\mathbb{F}_{q}$ and removing the assumption that $g \in K$ is geometric; thereby completing a proof of Artin's primitive root conjecture for function fields over $\mathbb{F}_{q}$. In doing so, we moreover identify an interesting correction factor which emerges when $g$ is not geometric. A crucial feature of our work is an exponential sum estimate over varieties that we derive from Weil's Theorem.

[1]  Wentang Kuo,et al.  Artin’s conjecture for Drinfeld modules , 2022, Algebra & Number Theory.

[2]  M. Ram Murty,et al.  Corrigendum to "Artin's primitive root conjecture for function fields revisited" [Finite Fields Appl. 67 (2020) 101713] , 2021, Finite Fields Their Appl..

[3]  M. Ram Murty,et al.  Artin's primitive root conjecture for function fields revisited , 2020, Finite Fields Their Appl..

[4]  E. Eisenstein,et al.  On extending Artin's conjecture to composite moduli in function fields , 2020 .

[5]  Bjorn Poonen,et al.  Rational Points on Varieties , 2017 .

[6]  Jing Yu,et al.  On primitive roots for rank one Drinfeld modules , 2010 .

[7]  A. Cojocaru Cyclicity of CM elliptic curves modulo p , 2003 .

[8]  Y. Kitaoka,et al.  On primitive roots of tori: The case of function fields , 2003 .

[9]  Jing Yu,et al.  On Artin's Conjecture for Rank One Drinfeld Modules , 2001 .

[10]  Chih-Hung Hsu On Artin's conjecture for the Carlitz module , 1997, Compositio Mathematica.

[11]  T. Willmore Algebraic Geometry , 1973, Nature.

[12]  G. I. Perel'muter Estimation of a sum along an algebraic curve , 1969 .

[13]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[14]  H. Bilharz Primdivisoren mit vorgegebener Primitivwurzel , 1937 .

[15]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[16]  M. Murty,et al.  Artin’s Conjecture for Polynomials Over Finite Fields , 2000 .

[17]  C. Hooley On Artin's conjecture. , 1967 .

[18]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[19]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .