Supervised semantic classification for nuclear proliferation monitoring

Existing feature extraction and classification approaches are not suitable for monitoring proliferation activity using high-resolution multi-temporal remote sensing imagery. In this paper we present a supervised semantic labeling framework based on the Latent Dirichlet Allocation method. This framework is used to analyze over 120 images collected under different spatial and temporal settings over the globe representing three major semantic categories: airports, nuclear, and coal power plants. Initial experimental results show a reasonable discrimination of these three categories even though coal and nuclear images share highly common and overlapping objects. This research also identified several research challenges associated with nuclear proliferation monitoring using high resolution remote sensing images.

[1]  Hamid Gharavi,et al.  3-D Motion Estimation Using Range Data , 2007, IEEE Transactions on Intelligent Transportation Systems.

[2]  John G. Harris,et al.  Rigid body motion from range image sequences , 1991, CVGIP Image Underst..

[3]  Martial Hebert,et al.  Natural terrain classification using three‐dimensional ladar data for ground robot mobility , 2006, J. Field Robotics.

[4]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  David M. Blei,et al.  Supervised Topic Models , 2007, NIPS.

[6]  Mihai Datcu,et al.  Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation , 2010, IEEE Geoscience and Remote Sensing Letters.

[7]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[8]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[9]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Aggelos K. Katsaggelos,et al.  Geospatial image mining for nuclear proliferation detection: Challenges and new opportunities , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[11]  D. Lichti Spectral Filtering and Classification of Terrestrial Laser Scanner Point Clouds , 2005 .

[12]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[13]  Richard L. Tutwiler,et al.  Using full motion 3D Flash LIDAR video for target detection, segmentation, and tracking , 2010, 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI).

[14]  Kim L. Boyer,et al.  Classifying land development in high-resolution panchromatic satellite images using straight-line statistics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Michel J. Richard,et al.  International Safeguards and Satellite Imagery: Key Features of the Nuclear Fuel Cycle and Computer-based Analysis, Bhupendra Jasani, Irmgard Niemeyer, Sven Nussbaum, Bernd Richter, Gotthard Stein (Eds.). Springer, Berlin (2009), (200 pp., £87, ISBN: 978-3-540-79131-7 , 2010 .

[16]  Anil M. Cheriyadat,et al.  Large-Scale Geospatial Indexing for Image-Based Retrieval and Analysis , 2005, ISVC.

[17]  Shashi Shekhar,et al.  An efficient spatial semi-supervised learning algorithm , 2007, Int. J. Parallel Emergent Distributed Syst..

[18]  J. B. Burns,et al.  Extracting straight lines , 1987 .

[19]  Anil M. Cheriyadat,et al.  Unsupervised Semantic Labeling Framework for Identification of Complex Facilities in High-Resolution Remote Sensing Images , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[20]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[22]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[23]  A. Kundu,et al.  Rotation and Gray Scale Transform Invariant Texture Identification using Wavelet Decomposition and Hidden Markov Model , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Chong Wang,et al.  Simultaneous image classification and annotation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Avideh Zakhor,et al.  Classifying urban landscape in aerial LiDAR using 3D shape analysis , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[26]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..