Microstructured cystine dendrites-based impedimetric sensor for nucleic acid detection.

We report results of the studies relating to the fabrication and characterization of novel biosensing electrode by covalent immobilization of DNA onto microstructural cystine (Cys) prepared by acoustic cavitation method. The TEM investigations of these structures reveal transformation of microstructured Cys from nanorods to dendritic structure under optimum conditions. The Cys dendrites (denCys) have been investigated by XRD, FT-IR, and SEM studies. These biosensing electrodes have been fabricated by immobilization of Escherichia coli (E. coli)-specific DNA probe onto the dendritic cystine. The results of the electrochemical impedance spectroscopy studies reveal that this nucleic acid sensor exhibits linear response to cDNA in the concentration range of 10(-6) to 10(-14) M with response time of 30 min. The biosensing characteristics show that the fabricated E. coli sensor can be reused about 4 times and is stable for ∼4 weeks. The studies on cross-reactivity of the sensor for other water-borne pathogens like Salmonella typhimurium, Neisseria meningitides, and Klebsiella pneumonia reveal specificity of the bioelectrode for E. coli detection.

[1]  A. P. Alivisatos,et al.  Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. , 2005, Nano letters.

[2]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[3]  A. Bonanni,et al.  Use of nanomaterials for impedimetric DNA sensors: a review. , 2010, Analytica chimica acta.

[4]  Christian Soeller,et al.  Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. , 2008, Analytical chemistry.

[5]  Keying Zhang,et al.  Fabrication of a Sensitive Impedance Biosensor of DNA Hybridization Based on Gold Nanoparticles Modified Gold Electrode , 2008 .

[6]  M. R. Imam,et al.  Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. , 2009, Chemical reviews.

[7]  S. Natarajan,et al.  Synthesis of L‐valine crystals , 2009 .

[8]  I. Suni Impedance methods for electrochemical sensors using nanomaterials , 2008 .

[9]  Jing Chen,et al.  Electrocatalytical properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets , 2008 .

[10]  J. Badyal,et al.  Self‐assembled PAMAM dendrimer films , 1997 .

[11]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[12]  William A. Goddard,et al.  Starburst dendrimers. 5. Molecular shape control , 1989 .

[13]  B. D. Malhotra,et al.  Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion‐doped polypyrrole film , 2001 .

[14]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[15]  B. D. Malhotra,et al.  Langmuir–Blodgett films of poly(3-dodecyl thiophene) for application to glucose biosensor , 2002 .

[16]  Carlos R. Cabrera,et al.  Single-Walled Carbon Nanotubes Modified Gold Electrodes as an Impedimetric DNA Sensor , 2010 .

[17]  D. Pang,et al.  Modification of glassy carbon and gold electrodes with DNA , 1996 .

[18]  E. Iwuoha,et al.  Electrochemical and spectroscopic properties of dendritic cobalto-salicylaldiimine DNA biosensor , 2010 .

[19]  Chad A Mirkin,et al.  Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles , 2004, Science.

[20]  Magdi M. Mossoba,et al.  Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms , 1983 .

[21]  J. Fréchet,et al.  Convergent dendrons and dendrimers: from synthesis to applications. , 2001, Chemical reviews.

[22]  P. Solanki,et al.  Nanostructured zirconium oxide based genosensor for Escherichia coli detection , 2009 .

[23]  P. Solanki,et al.  Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection , 2010 .

[24]  I. Fridovich,et al.  The sonochemical reduction of cytochrome c and its inhibition by superoxide dismutase. , 1972, The Journal of biological chemistry.

[25]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[26]  John Ballato,et al.  Monopod, bipod, tripod, and tetrapod gold nanocrystals. , 2003, Journal of the American Chemical Society.

[27]  S. M. Peterson,et al.  β‐D‐galactosidase activity of viable, non‐culturable coliform bacteria in marine waters , 1995, Letters in applied microbiology.

[28]  Kenneth S. Suslick,et al.  Protein microencapsulation of nonaqueous liquids , 1990 .

[29]  R. Renneberg,et al.  Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[30]  Z. Su,et al.  A facile method to produce highly monodispersed nanospheres of cystine aggregates , 2006 .

[31]  Feng Gu,et al.  Sonochemical synthesis of hollow PbS nanospheres. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  Bansi D. Malhotra,et al.  Immobilization of Lactate Dehydrogenase on Electrochemically Prepared Polyaniline Films , 1999 .

[33]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[34]  W. Kwok,et al.  Tuning the architecture of mesostructures by electrodeposition. , 2004, Journal of the American Chemical Society.

[35]  Steven L. Suib,et al.  Hydrothermal Growth of Manganese Dioxide into Three‐Dimensional Hierarchical Nanoarchitectures , 2006 .

[36]  R. Colwell,et al.  Effect of seawater on Escherichia coli β-galactosidase activity , 1996 .

[37]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[38]  Bong Jin Hong,et al.  Nanoscale-controlled spacing provides DNA microarrays with the SNP discrimination efficiency in solution phase. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  H. Yoon,et al.  Reversible Association/Dissociation Reaction of Avidin on the Dendrimer Monolayer Functionalized with a Biotin Analogue for a Regenerable Affinity-Sensing Surface , 2001 .

[40]  Y. Ozaki,et al.  Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. , 2006, The journal of physical chemistry. B.

[41]  Subhash Chand,et al.  Escherichia coli genosensor based on polyaniline. , 2007, Analytical chemistry.

[42]  Zhu Chang,et al.  PAMAM Dendrimers‐Based DNA Biosensors for Electrochemical Detection of DNA Hybridization , 2006 .

[43]  Yinjuan Xie,et al.  Large-Scale Synthesis of Single-Crystal Double-Fold Snowflake Cu2S Dendrites , 2006 .

[44]  Zhong Lin Wang,et al.  Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: large-scale synthesis, formation mechanism, and properties. , 2005, Angewandte Chemie.