Fast Generalized Multiscale FEM for Complex Media: Effortless Modeling of Topography and Heterogeneity

Numerical modeling of acoustic wave propagation is challenging for both classical finite difference methods and finite element approaches in the presence of irregular free surface topography and anomalies with high velocity contrasts. There is inaccuracy in modeling irregular boundaries in finite difference methods and time-consuming mesh generation for finite element methods. We present a hybrid approach to address these issues within the framework of the generalized multiscale finite element method (GMsFEM). In particular, we propose an efficient procedure to perform finite element based simulations without tedious mesh generation processes. The approach applies the GMsFEM to reduce computational complexity by utilizing two automatically generated grid systems. Using a complicated, 2D salt dome model, we demonstrate the accuracy of the GMsFEM solutions and the associated reduction in computing time by an order of magnitude.

[1]  Houman Owhadi,et al.  Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .

[2]  Wing Tat Leung,et al.  A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems , 2013 .

[3]  Susan E. Minkoff,et al.  Operator Upscaling for the Acoustic Wave Equation , 2005, Multiscale Model. Simul..

[4]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Modeling of Acoustic Wave Propagation , 2013 .

[5]  William W. Symes,et al.  Getting it right without knowing the answer: quality control in a large seismic modeling project , 2009 .

[6]  D. Appelö,et al.  A stable finite difference method for the elastic wave equation on complex geometries with free surfaces , 2007 .

[7]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[8]  Bent O. Ruud,et al.  2D finite‐difference elastic wave modelling including surface topography1 , 1994 .

[9]  Bent O. Ruud,et al.  2D finite‐difference viscoelastic wave modelling including surface topography , 2000 .

[10]  Susan E. Minkoff,et al.  An a priori error analysis of operator upscaling for the acoustic wave equation , 2008 .

[11]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[12]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[13]  S. Shapiro,et al.  Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress , 2007 .

[14]  Susan E. Minkoff,et al.  A Two--Scale Solution Algorithm for the Elastic Wave Equation , 2009, SIAM J. Sci. Comput..

[15]  Yalchin Efendiev,et al.  Analysis of global multiscale finite element methods for wave equations with continuum spatial scales , 2010 .

[16]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[17]  Susan E. Minkoff,et al.  A Matrix Analysis of Operator-Based Upscaling for the Wave Equation , 2006, SIAM J. Numer. Anal..

[18]  Yalchin Efendiev,et al.  An Energy-Conserving Discontinuous Multiscale Finite Element Method for the wave equation in Heterogeneous Media , 2011, Adv. Data Sci. Adapt. Anal..

[19]  Marcus J. Grote,et al.  Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation , 2009, Journal of Scientific Computing.

[20]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[21]  HEINZ-OTTO KREISS,et al.  A Second Order Accurate Embedded Boundary Method for the Wave Equation with Dirichlet Data , 2005, SIAM J. Sci. Comput..

[22]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[23]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[24]  Yang Zhang,et al.  Frequency-Domain Finite-Difference Acoustic Modeling With Free Surface Topography Using Embedded Boundary Method , 2010 .

[25]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .