Periodicity of flare index revisited using the Hilbert–Huang transform method

Using the Hilbert-Huang Transform (HHT) method, we investigate the periodicity in the monthly mean flare indices from 1966 to 2007 (corresponding to almost four complete solar cycles), calculated by T. Atac and A. Ozguc. The results show as following. (1) The periods of 9.37 +/- 2.53, 11.8 +/- 0.172 and 23.6 +/- 0.316 years are found to be statistically significant in the flare index. The most eminent period is 9.37 +/- 2.53 years. (2) Other periods of 0.237 +/- 0.196 years (86.6 +/- 71.6 days), 0.525 +/- 0.0508 years (191 +/- 18.5 days), 1.05 +/- 0.478 years (383 +/- 174 days) and 2.37 +/- 0.395 years are below the 99% confidence level line, suggesting they are due to stochastic random noise. (C) 2010 Elsevier B.V. All rights reserved.

[1]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[2]  H. Kiliç Midrange periodicities in sunspot numbers and flare index during solar cycle 23 , 2008 .

[3]  Dean G. Duffy,et al.  The Application of Hilbert-Huang Transforms to Meteorological Datasets , 2004 .

[4]  N. Huang,et al.  A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[6]  P. K. Manoharan,et al.  Periodicities in sunspot activity during solar cycle 23 , 2006, 0911.2565.

[7]  Sami K. Solanki,et al.  The 1.3-year and 156-day periodicities in sunspot data: Wavelet analysis suggests a common origin , 2002 .

[8]  Akira Morioka,et al.  Hilbert‐Huang Transform of geomagnetic pulsations at auroral expansion onset , 2009 .

[9]  Chung-Ho Wang,et al.  Identification of earthquake signals from groundwater level records using the HHT method , 2010 .

[10]  J. Rybák,et al.  Temporal variability of the flare index (1966–2001) , 2003 .

[11]  W. Zhu,et al.  Relative phase analyses of long-term hemispheric solar flare activity , 2010 .

[12]  Arthur E. Barnes,et al.  Short Note The calculation of instantaneous frequency and instantaneous bandwidth , 1992 .

[13]  Alyson G. Wilson The solar cycle and terrestrial climate , 2000 .

[14]  S. Sello,et al.  Wavelet entropy and the multi-peaked structure of solar cycle maximum , 2003 .

[15]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[16]  C. Guedes Soares,et al.  Identification of the components of wave spectra by the Hilbert Huang transform method , 2004 .

[17]  N. Huang,et al.  The Mechanism for Frequency Downshift in Nonlinear Wave Evolution , 1996 .

[18]  J. Wang,et al.  Periodicities in solar coronal mass ejections , 2003, astro-ph/0307277.

[19]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  A. Choudhuri How far are we from a ‘Standard Model’ of the solar dynamo? , 2008 .

[21]  J. Richardson,et al.  Solar wind oscillations with a 1.3 year period , 1994 .