Dislocation nucleation facilitated by atomic segregation.

[1]  Z. Duan,et al.  Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal. , 2010, The Journal of chemical physics.

[2]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[3]  K. E. Easterling,et al.  Phase Transformations in Metals and Alloys (Revised Reprint) , 2009 .

[4]  Matthew J. Kramer,et al.  Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu , 2008 .

[5]  J C Hamilton,et al.  An embedded-atom potential for the Cu–Ag system , 2006 .

[6]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[7]  E. Stach,et al.  Enhancement of dislocation velocities by stress assisted kink nucleation at the native oxide/SiGe interface , 2001 .

[8]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[9]  Huajian Gao,et al.  SURFACE ROUGHENING OF HETEROEPITAXIAL THIN FILMS , 1999 .

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  R. Smith,et al.  Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study , 1998 .

[12]  A. Zunger,et al.  Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures , 1997, cond-mat/9710225.

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  S. Pennycook,et al.  Kinetic Pathways to Strain Relaxation in the Si-Ge System , 1996 .

[16]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[17]  S J Pennycook,et al.  Crack-Like Sources of Dislocation Nucleation and Multiplication in Thin Films , 1995, Science.

[18]  Pennycook,et al.  Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. , 1993, Physical review letters.

[19]  Yang,et al.  Cracklike surface instabilities in stressed solids. , 1993, Physical review letters.

[20]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[21]  Peter A. Dowben,et al.  Surface Segregation phenomena , 1990 .

[22]  H. Okamoto,et al.  The Au−Cu (Gold-Copper) system , 1987 .

[23]  B. Pichaud,et al.  Selection of the glide systems activated at low stresses in copper , 1981 .

[24]  B. Pichaud,et al.  {110} Slip in copper slightly deformed at room temperature , 1980 .

[25]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[26]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[29]  F. Frank,et al.  One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  J. Rodríguez,et al.  Physical and chemical properties of bimetallic surfaces , 1996 .

[31]  J. Hirth Theory of Dislocations , 1968 .