A review on computational intelligence for identification of nonlinear dynamical systems

This work aims to provide a broad overview of computational techniques belonging to the area of artificial intelligence tailored for identification of nonlinear dynamical systems. Both parametric and nonparametric identification problems are considered. The examined computational intelligence techniques for parametric identification deal with genetic algorithm, particle swarm optimization, and differential evolution. Special attention is paid to the parameters estimation for a rich class of nonlinear dynamical models, including the Bouc–Wen model, chaotic systems, the Jiles–Atherton model, the LuGre model, the Prandtl–Ishlinskii model, the Preisach model, and the Wiener–Hammerstein model. On the other hand, genetic programming and artificial neural networks are discussed for nonparametric identification applications. Once the identification problem is formulated, a detailed illustration of the considered computational intelligence techniques is provided, together with a comprehensive examination of relevant applications in the fields of structural mechanics and engineering. Possible directions for future research are also addressed.

[1]  Yongguang Liu,et al.  Giant magnetostrictive actuator nonlinear dynamic Jiles–Atherton model , 2016 .

[2]  Sami F. Masri,et al.  Identification of structural systems by neural networks , 1996 .

[3]  F. A. Guerra,et al.  Multiobjective Exponential Particle Swarm Optimization Approach Applied to Hysteresis Parameters Estimation , 2012, IEEE Transactions on Magnetics.

[4]  Morteza Tofighi,et al.  Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction , 2018, Neurocomputing.

[5]  Nazmul Siddique,et al.  Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing , 2013 .

[6]  Giuseppe Quaranta,et al.  Multi-objective optimization by genetic algorithm of structural systems subject to random vibrations , 2009 .

[7]  Xu Zhang,et al.  Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints. , 2019, ISA transactions.

[8]  Lothar M. Schmitt,et al.  Theory of Genetic Algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling , 2004, Theor. Comput. Sci..

[9]  M.-A. Raulet,et al.  Identification of Jiles–Atherton Model Parameters Using Particle Swarm Optimization , 2008, IEEE Transactions on Magnetics.

[10]  Petros Koumoutsakos,et al.  Optimization based on bacterial chemotaxis , 2002, IEEE Trans. Evol. Comput..

[11]  Giuseppe Quaranta,et al.  Fuzzy-based robust structural optimization , 2008 .

[12]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[13]  Li-Min Zhu,et al.  Modeling and Identification of Piezoelectric-Actuated Stages Cascading Hysteresis Nonlinearity With Linear Dynamics , 2016, IEEE/ASME Transactions on Mechatronics.

[14]  Poul Henning Kirkegaard,et al.  Friction estimation in wind turbine blade bearings , 2016 .

[15]  Sami F. Masri,et al.  Structure-unknown non-linear dynamic systems: identification through neural networks , 1992 .

[16]  Sajad Jafari,et al.  Comment on ‘Parameters identification of chaotic systems by quantum-behaved particle swarm optimization’ [Int. J. Comput. Math. 86(12) (2009), pp. 2225–2235] , 2013, Int. J. Comput. Math..

[17]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[18]  Wei Hu,et al.  Parameter estimation of fractional-order arbitrary dimensional hyperchaotic systems via a hybrid adaptive artificial bee colony algorithm with simulated annealing algorithm , 2018, Eng. Appl. Artif. Intell..

[19]  Ananda Sanagavarapu Mohan,et al.  Micro-particle swarm optimizer for solving high dimensional optimization problems (muPSO for high dimensional optimization problems) , 2006, Appl. Math. Comput..

[20]  Joni-Kristian Kämäräinen,et al.  Differential Evolution Training Algorithm for Feed-Forward Neural Networks , 2003, Neural Processing Letters.

[21]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[22]  Wenmei Huang,et al.  Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators , 2007, Neurocomputing.

[23]  Qigui Yang,et al.  Parameter identification and synchronization of fractional-order chaotic systems , 2012 .

[24]  Raja Muhammad Asif Zahoor,et al.  Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system , 2018, Neural Computing and Applications.

[25]  Zhou Tong,et al.  Hybrid modeling of wire cable vibration isolation system through neural network , 2009, Math. Comput. Simul..

[26]  Yasser Fouad,et al.  Identification of Preisach hysteresis model parameters using genetic algorithms , 2017, Journal of King Saud University - Science.

[27]  Yu Guo,et al.  Parameter identification and optimisation for a class of fractional-order chaotic system with time delay , 2018, Int. J. Model. Identif. Control..

[28]  S. Russel and P. Norvig,et al.  “Artificial Intelligence – A Modern Approach”, Second Edition, Pearson Education, 2003. , 2015 .

[29]  L. Sun,et al.  Modeling the behaviors of magnetorheological elastomer isolator in shear-compression mixed mode utilizing artificial neural network optimized by fuzzy algorithm (ANNOFA) , 2018, Smart Materials and Structures.

[30]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[31]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[32]  Jun Zhang,et al.  Comparison of Performance between Different Selection Strategies on Simple Genetic Algorithms , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[33]  Viet-Thanh Pham,et al.  Parameter Identification of a Chaotic Circuit with a Hidden Attractor Using Krill Herd Optimization , 2016, Int. J. Bifurc. Chaos.

[34]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[35]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[36]  Ahsan Kareem,et al.  Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network , 2011 .

[37]  Patricia Melin,et al.  General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model , 2019, IEEE Transactions on Fuzzy Systems.

[38]  Amit Banerjee,et al.  A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems , 2014 .

[39]  W. Chang Parameter identification of Rossler’s chaotic system by an evolutionary algorithm , 2006 .

[40]  Zbigniew Michalewicz,et al.  Analysis of Stability, Local Convergence, and Transformation Sensitivity of a Variant of the Particle Swarm Optimization Algorithm , 2016, IEEE Transactions on Evolutionary Computation.

[41]  Randall S. Sexton,et al.  Beyond back propagation: using simulated annealing for training neural networks , 1999 .

[42]  Hussain N. Al-Duwaish A genetic approach to the identification of linear dynamical systems with static nonlinearities , 2000, Int. J. Syst. Sci..

[43]  Khashayar Khorasani,et al.  New training strategies for constructive neural networks with application to regression problems , 2004, Neural Networks.

[44]  G. Bekey,et al.  A global optimization algorithm using adaptive random search , 1980 .

[45]  Antonino Laudani,et al.  Comparative analysis of Bouc-Wen and Jiles-Atherton models under symmetric excitations , 2014 .

[46]  Walter Lacarbonara,et al.  Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification , 2015 .

[47]  Elias B. Kosmatopoulos,et al.  Analysis and modification of Volterra/Wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems , 2004 .

[48]  Giovanni Iacca,et al.  Compact Differential Evolution Light: High Performance Despite Limited Memory Requirement and Modest Computational Overhead , 2012, Journal of Computer Science and Technology.

[49]  Changchun Hua,et al.  Parameter identification of commensurate fractional-order chaotic system via differential evolution , 2012 .

[50]  M. V. Sivaselvan,et al.  Hysteretic models for deteriorating inelastic structures , 2000 .

[51]  G. S. Deep,et al.  Modeling a magnetostrictive transducer using genetic algorithm , 2001 .

[52]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[53]  Sai-Ho Ling,et al.  An Improved Genetic Algorithm with Average-bound Crossover and Wavelet Mutation Operations , 2007, Soft Comput..

[54]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[55]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[56]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[57]  Zhenyuan Jia,et al.  Research on a novel force sensor based on giant magnetostrictive material and its model , 2011 .

[58]  Raja Muhammad Asif Zahoor,et al.  Novel computing paradigms for parameter estimation in Hammerstein controlled auto regressive auto regressive moving average systems , 2019, Appl. Soft Comput..

[59]  Siti Zaiton Mohd Hashim,et al.  Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm , 2012, Appl. Math. Comput..

[60]  P. Whittle,et al.  A stochastic model of an artificial neuron , 1991, Advances in Applied Probability.

[61]  Hengqing Tong,et al.  Parameter estimation for chaotic system with initial random noises by particle swarm optimization , 2009 .

[62]  David Naso,et al.  Real-Valued Compact Genetic Algorithms for Embedded Microcontroller Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[63]  Sajad Jafari,et al.  Comment on "Parameter identification and synchronization of fractional-order chaotic systems" [Commun Nonlinear Sci Numer Simulat 2012;17: 305-16] , 2013, Commun. Nonlinear Sci. Numer. Simul..

[64]  J. Prawin,et al.  Nonlinear parametric identification strategy combining reverse path and hybrid dynamic quantum particle swarm optimization , 2016 .

[65]  Leandro dos Santos Coelho,et al.  Solution of Jiles-Atherton vector hysteresis parameters estimation by modified Differential Evolution approaches , 2012, Expert Syst. Appl..

[66]  Keith Worden,et al.  On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification , 2012 .

[67]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[68]  Mohammad Asif Zaman,et al.  Bouc–Wen hysteresis model identification using Modified Firefly Algorithm , 2015 .

[69]  H.-X. Li,et al.  Identification of Hammerstein models using genetic algorithms , 1999 .

[70]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[71]  Nouicer Abdelmadjid,et al.  Neural network-DFT based model for magnetostrictive hysteresis , 2011 .

[72]  Fabio Caraffini,et al.  A study on rotation invariance in differential evolution , 2019, Swarm Evol. Comput..

[73]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[74]  B. Turchiano,et al.  Genetic identification of dynamical systems with static nonlinearities , 2001, SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504).

[75]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[76]  Kalmanje Krishnakumar,et al.  Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization , 1990, Other Conferences.

[77]  David J. Murray-Smith,et al.  Structural system identification using genetic programming and a block diagram oriented simulation tool , 1996 .

[78]  Hengqing Tong,et al.  Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution , 2014, Expert Syst. Appl..

[79]  Franco Milicchio,et al.  Kinship-based differential evolution algorithm for unconstrained numerical optimization , 2020 .

[80]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[81]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[82]  James C. Bezdek,et al.  Computational Intelligence Defined - By Everyone ! , 1998 .

[83]  Kyoung Kwan Ahn,et al.  Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and Particle Swarm Optimization , 2012 .

[84]  Azeddine Kaddouri,et al.  Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm , 2015, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE).

[85]  Bruno Briseghella,et al.  Parameter identification of degrading and pinched hysteretic systems using a modified Bouc–Wen model , 2018 .

[86]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[87]  N. Mohajer Rahbari,et al.  A new hybrid optimization algorithm for recognition of hysteretic non-linear systems , 2013 .

[88]  Patrick T. Brewick,et al.  Dynamical response identification of a class of nonlinear hysteretic systems , 2018 .

[89]  Leandro dos Santos Coelho,et al.  Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization , 2008 .

[90]  Alessandro Salvini,et al.  Bouc–Wen Hysteresis Model Identification by the Metric-Topological Evolutionary Optimization , 2014, IEEE Transactions on Magnetics.

[91]  S. Masri,et al.  Application of Neural Networks for Detection of Changes in Nonlinear Systems , 2000 .

[92]  Yongguang Yu,et al.  Identification of uncertain incommensurate fractional-order chaotic systems using an improved quantum-behaved particle swarm optimization algorithm , 2018 .

[93]  Sami F. Masri,et al.  Development and application of computational intelligence approaches for the identification of complex nonlinear systems , 2014, Nonlinear Dynamics.

[94]  Giuseppe Quaranta,et al.  Optimization of force-limiting seismic devices connecting structural subsystems , 2016 .

[95]  Sean Luke,et al.  Two fast tree-creation algorithms for genetic programming , 2000, IEEE Trans. Evol. Comput..

[96]  Riccardo Poli,et al.  A Simple but Theoretically-Motivated Method to Control Bloat in Genetic Programming , 2003, EuroGP.

[97]  Jian Lin,et al.  Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems , 2015 .

[98]  Adam P. Piotrowski,et al.  Differential Evolution algorithms applied to Neural Network training suffer from stagnation , 2014, Appl. Soft Comput..

[99]  Jean-Philippe Noël,et al.  Nonlinear system identification in structural dynamics: 10 more years of progress , 2017 .

[100]  Araceli Sanchis,et al.  Non-Direct Encoding Method Based on Cellular Automata to Design Neural Network Architectures , 2005, Comput. Artif. Intell..

[101]  Vera Rich,et al.  Sun shines on UN's Kabul venture , 1986, Nature.

[102]  Kusum Deep,et al.  A new crossover operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[103]  C. Visone,et al.  Magnetic hysteresis modeling via feed-forward neural networks , 1998 .

[104]  L. Coelho,et al.  Nonlinear model identification of an experimental ball-and-tube system using a genetic programming approach , 2009 .

[105]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[106]  Tudor Sireteanu,et al.  Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices , 2010 .

[107]  S. Antman Nonlinear problems of elasticity , 1994 .

[108]  Xinggao Liu,et al.  A novel APSO-aided maximum likelihood identification method for Hammerstein systems , 2013 .

[109]  S. Masri,et al.  Identification of Nonlinear Dynamic Systems Using Neural Networks , 1993 .

[110]  Corrado Chisari,et al.  Sensitivity analysis and calibration of phenomenological models for seismic analyses , 2018, Soil Dynamics and Earthquake Engineering.

[111]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[112]  James Hensman,et al.  Natural computing for mechanical systems research: A tutorial overview , 2011 .

[113]  James F. Smith,et al.  Guiding Genetic Program Based Data Mining Using Fuzzy Rules , 2006, IDEAL.

[114]  Toshiharu Sugie,et al.  Synthesis of fixed-structure robust controllers using a constrained particle swarm optimizer with cyclic neighborhood topology , 2013, Expert Syst. Appl..

[115]  Alessandro Salvini,et al.  The Flock of Starlings Optimization: Influence of Topological Rules on the Collective Behavior of Swarm Intelligence , 2011, Computational Methods for the Innovative Design of Electrical Devices.

[116]  Jing Liu,et al.  Quantum-behaved particle swarm optimization with mutation operator , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[117]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[118]  Yongguang Yu,et al.  Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution , 2015, Nonlinear Dynamics.

[119]  Chunhua Wang,et al.  Memristor-based neural networks with weight simultaneous perturbation training , 2019, Nonlinear Dynamics.

[120]  Krzysztof Chwastek,et al.  Identification of a hysteresis model parameters with genetic algorithms , 2006, Math. Comput. Simul..

[121]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[122]  I. Guyon,et al.  Handwritten digit recognition: applications of neural network chips and automatic learning , 1989, IEEE Communications Magazine.

[123]  D. Savić,et al.  A symbolic data-driven technique based on evolutionary polynomial regression , 2006 .

[124]  Bui Ngoc Minh Truong,et al.  Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model , 2013 .

[125]  Giuseppe Quaranta,et al.  Genetic Algorithms in Mechanical Systems Identification: State-of-the-Art Review , 2009 .

[126]  Peng Chen,et al.  Principle and validation of modified hysteretic models for magnetorheological dampers , 2015 .

[127]  Alan F. Murray,et al.  Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training , 1994, IEEE Trans. Neural Networks.

[128]  Patrick T. Brewick,et al.  An evaluation of data-driven identification strategies for complex nonlinear dynamic systems , 2016 .

[129]  G. Stumberger,et al.  Parameter Identification of the Jiles–Atherton Hysteresis Model Using Differential Evolution , 2008, IEEE Transactions on Magnetics.

[130]  D.A. Lowther,et al.  A Neural Network Model Of Magnetic Hysteresis For Computational Magnetics , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[131]  Fuzhong Bai,et al.  Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm , 2015 .

[132]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[133]  Sayed Mohammad Reza Loghmanian,et al.  Comparison between multi-objective and single-objective optimization for the modeling of dynamic systems , 2012, J. Syst. Control. Eng..

[134]  Renato Barbieri,et al.  Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper , 2016 .

[135]  Jianchun Li,et al.  Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization , 2015 .

[136]  S. Masri,et al.  Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures , 2001 .

[137]  Jun Sun,et al.  Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method , 2010 .

[138]  Andrew D. Brown,et al.  Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm , 2001 .

[139]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[140]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[141]  Zarita Zainuddin,et al.  Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction , 2019, Appl. Soft Comput..

[142]  Ali Osman Topal,et al.  Large scale continuous global optimization based on micro differential evolution with local directional search , 2019, Inf. Sci..

[143]  Xiaoyi Feng,et al.  Parameter estimation of nonlinear chaotic system by improved TLBO strategy , 2016, Soft Comput..

[144]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[145]  Xishan Wen,et al.  A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops , 2015 .

[146]  L. Coelho,et al.  Nonlinear identification using a B-spline neural network and chaotic immune approaches , 2009 .

[147]  Zhenghao Ding,et al.  Parameters identification for chaotic systems based on a modified Jaya algorithm , 2018, Nonlinear Dynamics.

[148]  Ye Xu,et al.  Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..

[149]  Poul Henning Kirkegaard,et al.  Identification of time-varying nonlinear systems using differential evolution algorithm , 2014 .

[150]  Raja Muhammad Asif Zahoor,et al.  Parameter estimation for Hammerstein control autoregressive systems using differential evolution , 2018, Signal Image Video Process..

[151]  Wei-Hsin Liao,et al.  Modeling and control of magnetorheological fluid dampers using neural networks , 2005 .

[152]  R. Rao Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems , 2016 .

[153]  Wenbo Xu,et al.  Nonlinear System Identification of Hammerstien and Wiener Model Using Swarm Intelligence , 2006, 2006 IEEE International Conference on Information Acquisition.

[154]  Héctor Pomares,et al.  Time series analysis using normalized PG-RBF network with regression weights , 2002, Neurocomputing.

[155]  Ilangko Balasingham,et al.  Parameter identification for Van Der Pol-Duffing oscillator by a novel artificial bee colony algorithm with differential evolution operators , 2013, Appl. Math. Comput..

[156]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[157]  Jianchun Li,et al.  Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm , 2015 .

[158]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[159]  Robert Zalewski,et al.  Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm , 2019, Archives of Civil and Mechanical Engineering.

[160]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[161]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[162]  E. Kalnay,et al.  Neural machine-based forecasting of chaotic dynamics , 2019, Nonlinear Dynamics.

[163]  Tansel Dökeroglu,et al.  A survey on new generation metaheuristic algorithms , 2019, Comput. Ind. Eng..

[164]  Carlos M. Fonseca,et al.  'Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[165]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[166]  Zongjing Li,et al.  Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers , 2017 .

[167]  Haifeng Li,et al.  Ensemble of differential evolution variants , 2018, Inf. Sci..

[168]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[169]  Zhouping Yin,et al.  An Asymmetric Hysteresis Model and Parameter Identification Method for Piezoelectric Actuator , 2014 .

[170]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[171]  C. M. Wen,et al.  Nonparametric Identification of a Building Structure from Experimental Data Using Wavelet Neural Network , 2003 .

[172]  Giuseppe Quaranta,et al.  Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution , 2010 .

[173]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[174]  Chan Ghee Koh,et al.  Modified genetic algorithm strategy for structural identification , 2006 .

[175]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[176]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[177]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[178]  L. Vandevelde,et al.  Neural-network-based model for dynamic hysteresis in the magnetostriction of electrical steel under sinusoidal magnetisation , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[179]  Ferdinando Auricchio,et al.  Hysteresis of Multiconfiguration Assemblies of Nitinol and Steel Strands: Experiments and Phenomenological Identification , 2015 .

[180]  Jun Ma,et al.  A physical view of computational neurodynamics , 2019, Journal of Zhejiang University-SCIENCE A.

[181]  D. Bigoni Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability , 2012 .

[182]  Ma Jun,et al.  A review for dynamics of collective behaviors of network of neurons , 2015 .

[183]  Markus Brameier,et al.  On linear genetic programming , 2005 .

[184]  Lee Spector,et al.  Size Control Via Size Fair Genetic Operators In The PushGP Genetic Programming System , 2002, GECCO.

[185]  Chih-Chen Chang,et al.  Neural Network Modeling of a Magnetorheological Damper , 1998 .

[186]  Zhili Long,et al.  Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map. , 2017, The Review of scientific instruments.

[187]  Nicos Makris,et al.  Comparison of Modeling Approaches for Full-scale Nonlinear Viscous Dampers , 2008 .

[188]  S. Masri,et al.  Data-Based Nonlinear Identification and Constitutive Modeling of Hysteresis in NiTiNOL and Steel Strands , 2016 .

[189]  Xiangtao Li,et al.  Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm , 2014 .

[190]  Xin Li,et al.  A hybrid quantum-inspired neural networks with sequence inputs , 2013, Neurocomputing.

[191]  Claudio Amadio,et al.  TOSCA: a Tool for Optimisation in Structural and Civil engineering Analyses , 2018, International Journal of Advanced Structural Engineering.

[192]  Zhang Ling,et al.  Parameter Estimation and its Sensitivity Analysis of the MR Damper Hysteresis Model Using a Modified Genetic Algorithm , 2009 .

[193]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[194]  Zhijian Wu,et al.  Adaptive Differential Evolution with variable population size for solving high-dimensional problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[195]  Md. Arifur Rahman,et al.  Analysis and compensation of hysteresis of PZT micro-actuator used in high precision dual-stage servo system , 2015, Int. J. Mechatronics Autom..

[196]  Sahbi Boubaker,et al.  Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting , 2017 .

[197]  Richard Alan Peters,et al.  Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives , 2018, Mach. Learn. Knowl. Extr..

[198]  G. Song,et al.  A Neural Network Inverse Model for a Shape Memory Alloy Wire Actuator , 2003 .

[199]  Hirosato Nomura,et al.  Parameters identification of chaotic systems by quantum-behaved particle swarm optimization , 2009, Int. J. Comput. Math..

[200]  Khaoula Hergli,et al.  Numerical determination of Jiles-Atherton hysteresis parameters: Magnetic behavior under mechanical deformation , 2017, Physica B: Condensed Matter.

[201]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[202]  A. Salvini,et al.  Neural Network Approach for Modelling Hysteretic Magnetic Materials Under Distorted Excitations , 2012, IEEE Transactions on Magnetics.

[203]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[204]  Yozo Fujino,et al.  Development and validation of nonlinear computational models of dispersed structures under strong earthquake excitation , 2014 .

[205]  Walter Lacarbonara,et al.  Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter , 2012 .

[206]  Tung-Kuan Liu,et al.  Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm , 2006, IEEE Trans. Neural Networks.

[207]  A. Mannarino,et al.  Nonlinear aeroelastic reduced order modeling by recurrent neural networks , 2014 .

[208]  Yikun Yang,et al.  Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller , 2018 .

[209]  Ruben Morales-Menendez,et al.  An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers , 2012 .

[210]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[211]  Shahryar Rahnamayan,et al.  Micro-differential evolution: Diversity enhancement and a comparative study , 2015, Appl. Soft Comput..

[212]  Jin-Song Pei,et al.  Mem-models as building blocks for simulation and identification of hysteretic systems , 2020 .

[213]  K. Aihara,et al.  Chaotic neural networks , 1990 .

[214]  Rong-Fong Fung,et al.  System identification of a novel 6-DOF precision positioning table , 2009 .

[215]  Meiying Ye,et al.  Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .

[216]  I. Carro-Pérez,et al.  Experimental verification of a memristive neural network , 2018 .

[217]  Caibin Zeng,et al.  Chaos detection and parameter identification in fractional-order chaotic systems with delay , 2013 .

[218]  Zbigniew Michalewicz,et al.  Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review , 2017, Evolutionary Computation.

[219]  Lutz Prechelt,et al.  Automatic early stopping using cross validation: quantifying the criteria , 1998, Neural Networks.

[220]  Riccardo Poli,et al.  Theoretical results in genetic programming: the next ten years? , 2010, Genetic Programming and Evolvable Machines.

[221]  Yudong Zhang,et al.  A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications , 2015 .

[222]  Leandro dos Santos Coelho,et al.  Fuzzy Identification Based on a Chaotic Particle Swarm Optimization Approach Applied to a Nonlinear Yo-yo Motion System , 2007, IEEE Transactions on Industrial Electronics.

[223]  Xin Zhang,et al.  Modeling of nonlinear system based on deep learning framework , 2016 .

[224]  David J. Murray-Smith,et al.  Nonlinear model structure identification using genetic programming , 1998 .

[225]  Xing-Shi He,et al.  Mathematical Foundations of Nature-Inspired Algorithms , 2019, SpringerBriefs in Optimization.

[226]  C. K. Michael Tse,et al.  Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization , 2016, Int. J. Bifurc. Chaos.

[227]  Wendy Ashlock,et al.  Using Very Small Population Sizes in Genetic Programming , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[228]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[229]  Peng Yan,et al.  Modeling, identification and compensation of hysteresis nonlinearity for a piezoelectric nano-manipulator , 2017 .

[230]  A. Kai Qin,et al.  Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[231]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[232]  David M. Simpson,et al.  Wiener-Hammerstein Parameter Estimation using Differential Evolution - Application to Limb Reflex Dynamics , 2010, BIOSIGNALS.

[233]  Ibrahim Ozkol,et al.  Application of a magnetorheological damper modeled using the current–dependent Bouc–Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay , 2014 .

[234]  Antonios Tsourdos,et al.  Convergence proof of an enhanced Particle Swarm Optimisation method integrated with Evolutionary Game Theory , 2016, Inf. Sci..

[235]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[236]  Tobias Blickle,et al.  Evolving Compact Solutions in Genetic Programming: A Case Study , 1996, PPSN.

[237]  Karol R. Opara,et al.  Differential Evolution: A survey of theoretical analyses , 2019, Swarm Evol. Comput..

[238]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[239]  Alan Wright,et al.  Automatic identification of wind turbine models using evolutionary multiobjective optimization , 2016 .

[240]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[241]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons & Fractals.

[242]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[243]  Ting Zhang,et al.  Master–slave model-based parallel chaos optimization algorithm for parameter identification problems , 2015, Nonlinear Dynamics.

[244]  P. Antsaklis,et al.  Modeling the Response of ER Damper: Phenomenology and Emulation , 1996 .

[245]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[246]  Tommy W. S. Chow,et al.  Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients , 2001, IEEE Trans. Neural Networks.

[247]  Yanchun Liang,et al.  IDENTIFICATION OF RESTORING FORCES IN NON-LINEAR VIBRATION SYSTEMS BASED ON NEURAL NETWORKS , 1997 .

[248]  G. Marano,et al.  Genetic-Algorithm-Based Strategies for Dynamic Identification of Nonlinear Systems with Noise-Corrupted Response , 2010 .

[249]  Flávio D. Marques,et al.  Multi-variable Volterra kernels identification using time-delay neural networks: application to unsteady aerodynamic loading , 2019, Nonlinear Dynamics.

[250]  J R Saunders,et al.  A particle swarm optimizer with passive congregation. , 2004, Bio Systems.

[251]  Rong-Fong Fung,et al.  System identification of a dual-stage XY precision positioning table , 2009 .

[252]  Shuying Cao,et al.  Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress , 2008 .

[253]  Giuseppe Quaranta,et al.  Seismic response prediction of reinforced concrete buildings through nonlinear combinations of intensity measures , 2018, Bulletin of Earthquake Engineering.

[254]  Julien Clinton Sprott,et al.  A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints , 2014, Int. J. Bifurc. Chaos.

[255]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[256]  Andrew W. Smyth,et al.  New Approach to Designing Multilayer Feedforward Neural Network Architecture for Modeling Nonlinear Restoring Forces. I: Formulation , 2006 .

[257]  Li-Min Zhu,et al.  Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization , 2013 .

[258]  Rong-Fong Fung,et al.  System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator , 2012 .

[259]  Maciej Ławryńczuk,et al.  Pruning of recurrent neural models: an optimal brain damage approach , 2018 .

[260]  Vincenzo Piluso,et al.  Critical issues in parameter calibration of cyclic models for steel members , 2017 .

[261]  Bing Li,et al.  Modified Bouc–Wen model for hysteresis behavior of RC beam–column joints with limited transverse reinforcement , 2013 .

[262]  Hengqing Tong,et al.  Identification time-delayed fractional order chaos with functional extrema model via differential evolution , 2013, Expert Syst. Appl..

[263]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[264]  Wei Hu,et al.  Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader , 2019 .

[265]  Hod Lipson,et al.  Age-fitness pareto optimization , 2010, GECCO '10.

[266]  Hojjat Adeli,et al.  Dynamic Wavelet Neural Network for Nonlinear Identification of Highrise Buildings , 2005 .

[267]  Jun Ma,et al.  Cooperative dynamics in neuronal networks , 2013 .

[268]  Ling Wang,et al.  An effective hybrid PSOSA strategy for optimization and its application to parameter estimation , 2006, Appl. Math. Comput..

[269]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[270]  C. K. Dimou,et al.  Comparison of Evolutionary Algorithms for the Identification of Bouc-Wen Hysteretic Systems , 2015, J. Comput. Civ. Eng..

[271]  Duc Truong Pham,et al.  Identification of linear and nonlinear dynamic systems using recurrent neural networks , 1993, Artif. Intell. Eng..

[272]  Giuseppe Quaranta,et al.  Modified Genetic Algorithm for the Dynamic Identification of Structural Systems Using Incomplete Measurements , 2011, Comput. Aided Civ. Infrastructure Eng..

[273]  Ahmed S. Elwakil,et al.  Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms , 2019, Nonlinear Dynamics.

[274]  Jinung An,et al.  An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization , 2013, TheScientificWorldJournal.

[275]  Nopdanai Ajavakom,et al.  Performance of nonlinear degrading structures: Identification, validation, and prediction , 2008 .

[276]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[277]  Chih-Chen Chang,et al.  NEURAL NETWORK EMULATION OF INVERSE DYNAMICS FOR A MAGNETORHEOLOGICAL DAMPER , 2002 .

[278]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[279]  Walter Lacarbonara,et al.  Nonlinear vibration absorber with pinched hysteresis: Theory and experiments , 2016 .

[280]  Walter Lacarbonara,et al.  Parametric Identification of Carbon Nanotube Nanocomposites Constitutive Response , 2019, Journal of Applied Mechanics.

[281]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[282]  Tegoeh Tjahjowidodo,et al.  A new approach of friction model for tendon-sheath actuated surgical systems: Nonlinear modelling and parameter identification , 2015 .

[283]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[284]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[285]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[286]  Giovanni Iacca,et al.  Compact Particle Swarm Optimization , 2013, Inf. Sci..

[287]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[288]  Mario Carpentieri,et al.  Removing numerical instabilities in the Preisach model identification using genetic algorithms , 2006 .

[289]  John E. Fletcher,et al.  Double-Frequency Method Using Differential Evolution for Identifying Parameters in the Dynamic Jiles–Atherton Model of Mn–Zn Ferrites , 2013, IEEE Transactions on Instrumentation and Measurement.

[290]  F.R. Fulginei,et al.  Softcomputing for the identification of the Jiles-Atherton model parameters , 2005, IEEE Transactions on Magnetics.

[291]  Yang Tang,et al.  Metaheuristic optimization-based identification of fractional-order systems under stable distribution noises , 2018, Physics Letters A.

[292]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[293]  Firooz Bakhtiari-Nejad,et al.  A geometrically exact approach to the overall dynamics of elastic rotating blades—part 2: flapping nonlinear normal modes , 2012 .

[294]  Peter J. Fleming,et al.  Evolution of mathematical models of chaotic systems based on multiobjective genetic programming , 2005, Knowledge and Information Systems.

[295]  Marzuki Khalid,et al.  Nonlinear Identification of a Magneto-Rheological Damper Based on Dynamic Neural Networks , 2014, Comput. Aided Civ. Infrastructure Eng..

[296]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[297]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[298]  Jie Fu,et al.  NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator , 2016 .

[299]  Yongqiang Liu,et al.  A Quantizing Method for Determination of Controlled Damping Parameters of Magnetorheological Damper Models , 2011 .

[300]  Yang Tang,et al.  Identification of fractional-order systems with unknown initial values and structure , 2017 .

[301]  Michael Georgiopoulos,et al.  Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization , 1997, Neurocomputing.

[302]  Gang Xu,et al.  On convergence analysis of particle swarm optimization algorithm , 2018, J. Comput. Appl. Math..

[303]  Sean Luke,et al.  Population Implosion in Genetic Programming , 2003, GECCO.

[304]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[305]  Tae-Hyoung Kim,et al.  Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. , 2017, ISA transactions.

[306]  Rahimullah Sarban,et al.  Hysteresis modelling of a core-free EAP tubular actuator , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[307]  Keith Worden,et al.  Modeling and classification of non-linear systems using neural networks--I. Simulation , 1994 .

[308]  Zsolt Szabó,et al.  Implementation and identification of Preisach type hysteresis models with Everett Function in closed form , 2015 .

[309]  N. Sadowski,et al.  Real coded genetic algorithm for Jiles-Atherton model parameters identification , 2004, IEEE Transactions on Magnetics.

[310]  Fucai Liu,et al.  Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution , 2017 .

[311]  Walter Lacarbonara,et al.  A geometrically exact formulation for thin multi-layered laminated composite plates: Theory and experiment , 2011 .

[312]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[313]  L. Coelho A quantum particle swarm optimizer with chaotic mutation operator , 2008 .

[314]  Riccardo Poli,et al.  Genetic Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications , 2008, Computational Intelligence: A Compendium.

[315]  Valeria V. Krzhizhanovskaya,et al.  Differential evolution for system identification of self-excited vibrations , 2015, J. Comput. Sci..

[316]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[317]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[318]  Chin-Hsiung Loh,et al.  Nonlinear Identification of Dynamic Systems Using Neural Networks , 2001 .

[319]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[320]  Zhang Wenjing,et al.  Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm , 2006, 2007 Chinese Control Conference.

[321]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[322]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using multi-objective optimization algorithms , 2013 .

[323]  Giuseppe Quaranta,et al.  Parametric identification of seismic isolators using differential evolution and particle swarm optimization , 2014, Appl. Soft Comput..

[324]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[325]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[326]  Chih-Jer Lin,et al.  Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl–Ishlinskii model , 2015 .

[327]  J. Chou,et al.  Parameter identification of chaotic systems using improved differential evolution algorithm , 2010 .

[328]  Yongqing Yang,et al.  Lag synchronization for fractional-order memristive neural networks via period intermittent control , 2017, Nonlinear Dynamics.

[329]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[330]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[331]  Anikó Ekárt,et al.  Selection Based on the Pareto Nondomination Criterion for Controlling Code Growth in Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[332]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[333]  Armando De Giusti,et al.  Particle Swarm Optimization with Variable Population Size , 2006, ICAISC.

[334]  Fouad Giri,et al.  Wiener–Hammerstein system identification – an evolutionary approach , 2016, Int. J. Syst. Sci..

[335]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[336]  Liyan Zhang,et al.  Empirical study of particle swarm optimizer with an increasing inertia weight , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[337]  Václav Snásel,et al.  Metaheuristic design of feedforward neural networks: A review of two decades of research , 2017, Eng. Appl. Artif. Intell..

[338]  Orazio Giustolisi,et al.  Inferring groundwater system dynamics from hydrological time-series data , 2010 .

[339]  Weiwei Zhang,et al.  Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers , 2019, Nonlinear Dynamics.

[340]  Rawaa Dawoud Al-Dabbagh,et al.  Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy , 2018, Swarm Evol. Comput..

[341]  Theodosios Korakianitis,et al.  Boundary node Petrov–Galerkin method in solid structures , 2018 .

[342]  Her-Terng Yau,et al.  System Identification and Semiactive Control of a Squeeze-Mode Magnetorheological Damper , 2013, IEEE/ASME Transactions on Mechatronics.

[343]  Rong-Fong Fung,et al.  Using the modified PSO method to identify a Scott-Russell mechanism actuated by a piezoelectric element , 2009 .

[344]  Sami F. Masri,et al.  MODELLING UNKNOWN STRUCTURAL SYSTEMS THROUGH THE USE OF NEURAL NETWORKS , 1996 .

[345]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[346]  S. Masri,et al.  Training neural networks by adaptive random search techniques , 1999 .

[347]  José Elias Laier,et al.  A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification , 2009, Adv. Eng. Softw..

[348]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[349]  Yu Xie,et al.  Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method , 2017 .

[350]  Lee Spector,et al.  Genetic Programming with Epigenetic Local Search , 2015, GECCO.

[351]  W. Pitts,et al.  How we know universals; the perception of auditory and visual forms. , 1947, The Bulletin of mathematical biophysics.

[352]  D. Savić,et al.  Advances in data-driven analyses and modelling using EPR-MOGA. , 2009 .

[353]  Andrew W. Smyth,et al.  Mapping polynomial fitting into feedforward neural networks for modeling nonlinear dynamic systems and beyond , 2005 .

[354]  Giuseppe Quaranta,et al.  Optimum design of prestressed concrete beams using constrained differential evolution algorithm , 2014 .

[355]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[356]  Jun Tang,et al.  A review for dynamics in neuron and neuronal network , 2017, Nonlinear Dynamics.

[357]  Keith Worden,et al.  On evolutionary system identification with applications to nonlinear benchmarks , 2018, Mechanical Systems and Signal Processing.

[358]  Jonathan E. Cooper,et al.  IDENTIFICATION OF RESTORING FORCES IN NON-LINEAR VIBRATION SYSTEMS USING FUZZY ADAPTIVE NEURAL NETWORKS , 2001 .

[359]  Sami F. Masri,et al.  Studies into Computational Intelligence and Evolutionary Approaches for Model‐Free Identification of Hysteretic Systems , 2015, Comput. Aided Civ. Infrastructure Eng..

[360]  Sami F. Masri,et al.  Nonlinear data‐driven computational models for response prediction and change detection , 2015 .

[361]  Nopdanai Ajavakom,et al.  On system identification and response prediction of degrading structures , 2006 .

[362]  Walter Lacarbonara,et al.  Flutter of an Arch Bridge via a Fully Nonlinear Continuum Formulation , 2011 .