Model-Based Video Classification toward Hierarchical Representation, Indexing and Access

In this paper, we develop a content-based video classification approach to support semantic categorization, high-dimensional indexing and multi-level access. Our contributions are in four points: (a) We first present a hierarchical video database model that captures the structures and semantics of video contents in databases. One advantage of this hierarchical video database model is that it can provide a framework for automatic mapping from high-level concepts to low-level representative features. (b) We second propose a set of useful techniques for exploiting the basic units (e.g., shots or objects) to access the videos in database. (c) We third suggest a learning-based semantic classification technique to exploit the structures and semantics of video contents in database. (d) We further develop a cluster-based indexing structure to both speed-up query-by-example and organize databases for supporting more effective browsing. The applications of this proposed multi-level video database representation and indexing structures for MPEG-7 are also discussed.

[1]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[2]  Takeo Kanade,et al.  Name-It: association of face and name in video , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Thomas S. Huang,et al.  Constructing table-of-content for videos , 1999, Multimedia Systems.

[4]  Stephen W. Smoliar,et al.  An integrated system for content-based video retrieval and browsing , 1997, Pattern Recognit..

[5]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jianping Fan,et al.  Adaptive motion-compensated video coding scheme towards content-based bit rate allocation , 2000, J. Electronic Imaging.

[7]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[8]  B. S. Manjunath,et al.  NeTra-V: toward an object-based video representation , 1997, Electronic Imaging.

[9]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[10]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[11]  Jonathan D. Courtney Automatic video indexing via object motion analysis , 1997, Pattern Recognit..

[12]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[13]  Aidong Zhang,et al.  SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data , 2002, IEEE Trans. Knowl. Data Eng..

[14]  Alexander Thomasian,et al.  Clustering and singular value decomposition for approximate indexing in high dimensional spaces , 1998, CIKM '98.

[15]  Thomas S. Huang,et al.  A novel relevance feedback technique in image retrieval , 1999, MULTIMEDIA '99.

[16]  Borko Furht,et al.  Video and Image Processing in Multimedia Systems , 1995 .

[17]  Shih-Fu Chang,et al.  A fully automated content-based video search engine supporting spatiotemporal queries , 1998, IEEE Trans. Circuits Syst. Video Technol..

[18]  Amarnath Gupta,et al.  Virage video engine , 1997, Electronic Imaging.

[19]  Levent Onural,et al.  Image sequence analysis for emerging interactive multimedia services-the European COST 211 framework , 1998, IEEE Trans. Circuits Syst. Video Technol..

[20]  Jianping Fan,et al.  Spatiotemporal segmentation for compact video representation , 2001, Signal Process. Image Commun..

[21]  Charles A. Bouman,et al.  ViBE: a compressed video database structured for active browsing and search , 2004, IEEE Transactions on Multimedia.

[22]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[23]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[24]  Charles A. Bouman,et al.  A compressed video database structured for active browsing and search , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  Ambuj K. Singh,et al.  Dimensionality Reduction for Similarity Searching in Dynamic Databases , 1999, Comput. Vis. Image Underst..

[26]  A. Murat Tekalp,et al.  Temporal video segmentation using unsupervised clustering and semantic object tracking , 1998, J. Electronic Imaging.

[27]  Wei Xiong,et al.  Query by video clip , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[28]  Shih-Fu Chang,et al.  Clustering methods for video browsing and annotation , 1996, Electronic Imaging.

[29]  Aidong Zhang,et al.  Semantic clustering and querying on heterogeneous features for visual data , 1998, MULTIMEDIA '98.