An application of the discrete Lotka–Volterra system with variable step-size to singular value computation
暂无分享,去创建一个
[1] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[2] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[3] R. Hirota. Conserved Quantities of “Random-Time Toda Equation” , 1997 .
[4] Yoshimasa Nakamura,et al. Schur flow for orthogonal polynomials on the unit circle and its integrable discretization , 2002 .
[5] Yoshimasa Nakamura,et al. On the convergence of a solution of the discrete Lotka-Volterra system , 2002 .
[6] A. Zhedanov,et al. Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .
[7] Yoshimasa Nakamura,et al. The discrete Lotka-Volterra system computes singular values , 2001 .
[8] Yoshimasa Nakamura,et al. The Discrete Relativistic Toda Molecule Equation and a Padé Approximation Algorithm , 2001, Numerical Algorithms.