EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer

[1]  J. Lipkowski,et al.  In situ electrochemical and PM-IRRAS studies of alamethicin ion channel formation in model phospholipid bilayers , 2017, Journal of Electroanalytical Chemistry.

[2]  A. Schwan,et al.  Gramicidin A ion channel formation in model phospholipid bilayers tethered to gold (111) electrode surfaces , 2017 .

[3]  L. Becucci,et al.  Mechanism of voltage-gated channel formation in lipid membranes. , 2016, Biochimica et biophysica acta.

[4]  A. Naito,et al.  Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. , 2015, Biochimica et biophysica acta.

[5]  G. Valinčius,et al.  Tethered Phospholipid Bilayer Membranes , 2015 .

[6]  O. Maniti,et al.  Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations. , 2014, Biochimie.

[7]  Jing Zhao,et al.  Biomimetic and bioinspired membranes: Preparation and application , 2014 .

[8]  Patrick O. Saboe,et al.  Biomimetic membranes: A review , 2014 .

[9]  Fulin Wu,et al.  Lipid Fluid-Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy. , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  C. Brosseau,et al.  In Situ PM–IRRAS Studies of Biomimetic Membranes Supported at Gold Electrode Surfaces , 2013 .

[11]  S. Futaki,et al.  Extramembrane control of ion channel peptide assemblies, using alamethicin as an example. , 2013, Accounts of chemical research.

[12]  Fulin Wu,et al.  Dependence of Alamethicin Membrane Orientation on the Solution Concentration. , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[13]  J. Lipkowski,et al.  Direct visualization of the alamethicin pore formed in a planar phospholipid matrix , 2012, Proceedings of the National Academy of Sciences.

[14]  Wolfgang Knoll,et al.  Biotechnology Applications of Tethered Lipid Bilayer Membranes , 2012, Materials.

[15]  F. Ivanauskas,et al.  Electrochemical impedance spectroscopy of tethered bilayer membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[16]  A. Scaloni,et al.  Probing membrane permeabilization by the antimicrobial peptide distinctin in mercury-supported biomimetic membranes. , 2011, Biochimica et biophysica acta.

[17]  W. Knoll,et al.  Proteins in biomimetic membranes: promises and facts , 2011 .

[18]  K. Nguyen,et al.  Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. , 2010, The journal of physical chemistry. B.

[19]  J. Nagle,et al.  Alamethicin Aggregation in Lipid Membranes , 2009, Journal of Membrane Biology.

[20]  J. Dutcher,et al.  Molecular resolution imaging of an antibiotic peptide in a lipid matrix. , 2009, Journal of the American Chemical Society.

[21]  M. Lösche,et al.  Structure of functional Staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes. , 2009, Biophysical journal.

[22]  T. Salditt,et al.  Interaction of alamethicin pores in DMPC bilayers. , 2007, Biophysical journal.

[23]  J. Kasianowicz,et al.  Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes , 2007, Biointerphases.

[24]  T. Salditt,et al.  Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity. , 2006, Biophysical journal.

[25]  T. Salditt,et al.  Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering. , 2006, Biochimica et biophysica acta.

[26]  J. Lipkowski,et al.  Quantitative SNIFTIRS and PM IRRAS of Organic Molecules at Electrode Surfaces , 2006 .

[27]  Ingo Köper,et al.  Tethered bimolecular lipid membranes - A novel model membrane platform , 2006 .

[28]  M. Lösche,et al.  Enzyme activity to augment the characterization of tethered bilayer membranes. , 2006, The journal of physical chemistry. B.

[29]  W. Knoll,et al.  New method to measure packing densities of self-assembled thiolipid monolayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[30]  F. Reusser,et al.  A polypeptide antibacterial agent isolated fromTrichoderma viride , 1967, Experientia.

[31]  Wolfgang Knoll,et al.  Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. , 2003, Angewandte Chemie.

[32]  Huey W. Huang,et al.  Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. , 2002, Biophysical journal.

[33]  H. Duclohier,et al.  Voltage-Dependent Pore Formation and Antimicrobial Activity by Alamethicin and Analogues , 2001, The Journal of Membrane Biology.

[34]  S. Ludtke,et al.  Mechanism of alamethicin insertion into lipid bilayers. , 1996, Biophysical journal.

[35]  S. Ludtke,et al.  Neutron scattering in the plane of membranes: structure of alamethicin pores. , 1996, Biophysical journal.

[36]  Yili Wu,et al.  Lipid-alamethicin interactions influence alamethicin orientation. , 1991, Biophysical journal.

[37]  C. Toniolo,et al.  Studies of peptides forming 3(10)- and alpha-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. , 1991, Biochemistry.

[38]  P. Haris,et al.  Fourier transform infrared spectra of the polypeptide alamethicin and a possible structural similarity with bacteriorhodopsin. , 1988, Biochimica et biophysica acta.

[39]  J. Lipkowski,et al.  Measurement of Physical Adsorption of Neutral Organic Species at Solid Electrodes , 1986 .

[40]  L. Bruner A three state model for alamethicin conductance in bilayer membranes. , 1985, Journal of theoretical biology.

[41]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[42]  E. Blout,et al.  Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. D. Carlson,et al.  A simple method for the preparation of homogeneous phospholipid vesicles. , 1977, Biochemistry.

[44]  E. Bamberg,et al.  Single-channel parameters of gramicidin A,B, and C. , 1976, Biochimica et biophysica acta.

[45]  G Baumann,et al.  A molecular model of membrane excitability. , 1974, Journal of supramolecular structure.

[46]  D. O. Rudin,et al.  Action Potentials induced in Biomolecular Lipid Membranes , 1968, Nature.