On constructing new expansions of functions using linear operators
暂无分享,去创建一个
[1] Mohammad Masjed Jamei. Classical orthogonal polynomials with weight function ((ax + b)2 + (cx + d)2)−p exp(q Arctg((ax + b)/(cx + d))), x ∈ (−∞, ∞) and a generalization of T and F distributions , 2004 .
[2] S. Brandt,et al. Special Functions of Mathematical Physics , 2011 .
[3] M. Iqbal,et al. Classroom note: Fourier method for Laplace transform inversion , 2001, Adv. Decis. Sci..
[4] H. Keller,et al. Analysis of Numerical Methods , 1967 .
[5] A regularization method for the numerical inversion of the Laplace transform , 1993 .
[6] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[7] M. Masjed‐Jamei. Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation , 2002 .
[8] Mohammad Masjed-Jamei. On constructing new interpolation formulas using linear operators and an operator type of quadrature rules , 2008 .
[9] P. Revesz. Interpolation and Approximation , 2010 .
[10] G. A. Evans,et al. Laplace transform inversions using optimal contours in the complex plane , 2000, Int. J. Comput. Math..
[11] A basic class of symmetric orthogonal polynomials using the extended Sturm–Liouville theorem for symmetric functions , 2007, 1305.5669.
[12] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[13] M. Dehghan,et al. On rational classical orthogonal polynomials and their application for explicit computation of inverse Laplace transforms , 2005 .
[14] V. B. Uvarov,et al. Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .
[15] C. Cunha,et al. An iterative method for the numerical inversion of Laplace transforms , 1995 .
[16] G. Arfken. Mathematical Methods for Physicists , 1967 .
[17] M. V Mederos,et al. Gautschi, Walter. Numerical analysis: an introduction, Birkhäuser, 1997 , 1999 .
[18] W. Gautschi. Numerical analysis: an introduction , 1997 .
[19] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .