Efficient computation of compressible and incompressible flows

The combination of explicit Runge-Kutta time integration with the solution of an implicit system of equations, which in earlier work demonstrated increased efficiency in computing compressible flow on highly stretched meshes, is extended toward conditions where the free stream Mach number approaches zero. Expressing the inviscid flux Jacobians in terms of Mach number, an artificial speed of sound as in low Mach number preconditioning is introduced into the Jacobians, leading to a consistent formulation of the implicit and explicit parts of the discrete equations. Besides extension to low Mach number flows, the augmented Runge-Kutta/Implicit method allowed the admissible Courant-Friedrichs-Lewy number to be increased from O(100) to O(1000). The implicit step introduced into the Runge-Kutta framework acts as a preconditioner which now addresses both, the stiffness in the discrete equations associated with highly stretched meshes, and the stiffness in the analytical equations associated with the disparity in the eigenvalues of the inviscid flux Jacobians. Integrated into a multigrid algorithm, the method is applied to efficiently compute different cases of inviscid flow around airfoils at various Mach numbers, and viscous turbulent airfoil flow with varying Mach and Reynolds number. Compared to well tuned conventional methods, computation times are reduced by half an order of magnitude.

[1]  Toward efficient solution of the compressible Navier-Stokes equations , 2006 .

[2]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[3]  Antony Jameson,et al.  Multigrid solution of the Euler equations using implicit schemes , 1985 .

[4]  R. Rudnik Untersuchung der Leistungsfähigkeit von Zweigleichungs-Turbulenzmodellen bei Profilumströmungen , 1997 .

[5]  S. Patankar,et al.  Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations , 1988 .

[6]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[7]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[8]  Cord-Christian Rossow,et al.  Convergence Acceleration for Solving the Compressible Navier-Stokes Equations , 2006 .

[9]  Rainald Löhner,et al.  A fast, matrix-free implicit method for compressible flows on unstructured grids , 1998 .

[10]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[11]  R. C. Swanson,et al.  Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1990 .

[12]  C. Farhat,et al.  Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution , 1995 .

[13]  Rolf Radespiel,et al.  An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1989 .

[14]  Cord-Christian Rossow,et al.  A flux-splitting scheme for compressible and incompressible flows , 2000 .

[15]  Antony Jameson,et al.  Multigrid algorithms for compressible flow calculations , 1986 .

[16]  Arthur Rizzi,et al.  Navier–Stokes solvers in European aircraft design , 2002 .

[17]  Jinzhang Feng,et al.  Evaluation of preconditioning methods for time-marching systems , 1990 .

[18]  A. Jameson Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows , 1993 .

[19]  R. C. Swanson,et al.  A comparison of several implicit residual smoothing methods in combination with multigrid , 1993 .

[20]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[21]  Cord-Christian Rossow A blended pressure/density based method for the computation of incompressible and compressible flows , 2003 .

[22]  Antony Jameson,et al.  Fast preconditioned multigrid solution of the Euler and Navier-Stokes equations for steady, compressible flows , 2002 .

[23]  Michael B. Giles,et al.  Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes , 1997 .

[24]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[25]  Regine Ahrem,et al.  Aeroelastic Computation Using the AMANDA Simulation Environment , 2001 .

[26]  M. Hafez,et al.  Frontiers of Computational Fluid Dynamics 2002 , 2001 .

[27]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[28]  Jens K. Fassbender,et al.  Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Flight Reynolds Numbers , 2003 .

[29]  David Gottlieb,et al.  Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives , 1981 .

[30]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[31]  R. C. Swanson On Some Numerical Dissipation Schemes , 1998 .

[32]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[33]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[34]  Frédéric Le Chuiton Chimera simulation of a complete helicopter with rotors as actuator discs , 2006 .

[35]  A. Jameson,et al.  Implicit schemes and LU decompositions , 1981 .

[36]  Arno Ronzheimer,et al.  Three-Dimensional Navier-Stokes Simulations for Transport Aircraft High-Lift Configurations , 2001 .

[37]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[38]  Antony Jameson,et al.  How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm , 2001 .

[39]  M. Perić,et al.  A collocated finite volume method for predicting flows at all speeds , 1993 .

[40]  William L. Kleb,et al.  Efficient .Multi-Stage Time Marching for Viscous' Flows via. Local Preconditioning , 1999 .

[41]  Rolf Radespiel,et al.  Upwind Implicit Residual Smoothing Method for Multi-Stage Schemes , 1991 .

[42]  S. Allmaras,et al.  Analysis of a local matrix preconditioner for the 2-D Navier-Stokes equations , 1993 .

[43]  Cord-Christian Rossow,et al.  Extension of a Compressible Code Toward the Incompressible Limit , 2003 .

[44]  David L. Darmofal,et al.  Local Preconditioning: Manipulating Mother Nature to Fool Father Time , 1998 .