Ion cyclotron resonance heated conics: Theory and observations

A general theoretical treatment of energetic oxygen ion conic formation through cyclotron resonance with magnetospheric electromagnetic plasma turbulence is presented. With suitable assumptions, there exists a similarity regime in which the process may be profitably characterized by two parameters corresponding roughly to the velocity scale and pitch angle of the ion distribution. These may be independently determined from the wave and particle observations of a conic event, as is illustrated here using typical auroral passes of the Dynamics Explorer 1 satellite. The predictions of the theory are found to be in excellent agreement with the observations.

[1]  William H. Press,et al.  Numerical recipes , 1990 .

[2]  G. Crew,et al.  Equatorially generated ULF waves as a source for the turbulence associated with ion conics , 1989 .

[3]  L. Ball Can ion acceleration by double-cyclotron absorption produce O(+) ion conics , 1989 .

[4]  M. Hudson,et al.  Effects of ion two-stream instability on auroral ion heating , 1989 .

[5]  G. Crew,et al.  Heating of Thermal Ions Near the Equatorward Boundary of the Mid-Altitude Polar Cleft , 1989 .

[6]  Path-integral formulation of ion heating , 1988 .

[7]  D. Gurnett,et al.  Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone: A case study , 1988 .

[8]  P. Reiff,et al.  Determination of auroral electrostatic potentials using high- and low-altitude particle distributions , 1988 .

[9]  J. Burch Energetic particles and currents - Results from Dynamics Explorer , 1988 .

[10]  G. Crew,et al.  Electromagnetic tornadoes in space: Ion conics along auroral field lines generated by lower hybrid waves and electromagnetic turbulence in the ion cyclotron range of frequencies , 1988 .

[11]  H. Koskinen,et al.  Local transverse ion energization in and near the polar cusp , 1988 .

[12]  N. Singh,et al.  Perpendicular ion heating effects on the refilling of the outer plasmasphere , 1987 .

[13]  G. Crew,et al.  Monte Carlo modeling of oxygen-ion conic acceleration by cyclotron resonance with broadband electromagnetic turbulence , 1987 .

[14]  Chang,et al.  Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence. , 1987, Physical review letters.

[15]  Nonlinear Ion Heating in Magnetized Plasma by Monochromatic Low-Frequency Waves , 1986, IEEE Transactions on Plasma Science.

[16]  M. Temerin,et al.  Ion heating by waves with frequencies below the ion gyrofrequency , 1986 .

[17]  M. Temerin Evidence for a large bulk ion conic heating region , 1986 .

[18]  J. Cladis Parallel acceleration and transport of ions from polar ionosphere to plasma sheet , 1986 .

[19]  N. Hershkowitz,et al.  Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left‐hand polarized waves , 1986 .

[20]  W. Lotko,et al.  Transition to unstable ion flow in parallel electric fields. [in ionosphere] , 1986 .

[21]  J. Horwitz Velocity filter mechanism for ion bowl distributions (bimodal conics) , 1986 .

[22]  J. Retterer,et al.  Ion acceleration by lower hybrid waves in the suprauroral region , 1986 .

[23]  G. Crew,et al.  Asymptotic theory of ion conic distributions , 1985 .

[24]  Paul F. Fougere,et al.  On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: Simulation studies and application to geophysical data , 1985 .

[25]  M. Hudson,et al.  Lower hybrid heating of ionospheric ions due to ion ring distributions in the cusp , 1985 .

[26]  Y. Chiu,et al.  Trapping of ion conics by downward parallel electric fields. Technical report , 1985 .

[27]  D. Klumpar,et al.  Direct evidence for two-stage (bimodal) acceleration of ionospheric ions , 1984 .

[28]  D. Gurnett,et al.  Correlated low‐frequency electric and magnetic noise along the auroral field lines , 1984 .

[29]  B. A. Whalen,et al.  Distribution of upflowing ionospheric ions in the high‐altitude polar cap and auroral ionosphere , 1984 .

[30]  R. Schunk,et al.  Energization of ions in the auroral plasma by broadband waves - Generation of ion conics , 1984 .

[31]  F. Perkins ICRF Heating Theory , 1984, IEEE Transactions on Plasma Science.

[32]  M. Ashour‐Abdalla,et al.  Turbulent heating of heavy ions on auroral field lines , 1984 .

[33]  P. Kintner,et al.  A search for the plasma processes associated with perpendicular ion heating , 1984 .

[34]  J. Winningham,et al.  Observations of large scale ion conic generation with DE-1 , 1984 .

[35]  J. Retterer,et al.  Ion acceleration in the suprauroral region: A Monte Carlo Model , 1983 .

[36]  R. Gendrin Wave particle interactions as an energy transfer mechanism between different particle species , 1983 .

[37]  C. T. Dum,et al.  Dynamics of magnetosphere-ionosphere coupling including turbulent transport , 1983 .

[38]  B. Coppi,et al.  Lower hybrid acceleration and ion evolution in the suprauroral region , 1981 .

[39]  R. Hoffman,et al.  High-Altitude Plasma Instrument for Dynamics Explorer-A , 1981 .

[40]  H. Balsiger,et al.  The energetic ion composition spectrometer /EICS/ for the Dynamics Explorer-A , 1981 .

[41]  R. Helliwell,et al.  The plasma wave and quasi-static electric field instrument /PWI/ for dynamics Explorer-A , 1981 .

[42]  R. Schunk,et al.  Energization of ionospheric ions by electrostatic hydrogen cyclotron waves , 1981 .

[43]  L. Lyons,et al.  Generation of ion‐conic distribution by upgoing ionospheric electrons , 1981 .

[44]  K. Papadopoulos,et al.  Stochastic acceleration of large M/Q ions by hydrogen cyclotron waves in the magnetosphere , 1980 .

[45]  R. Lysak,et al.  Ion heating by strong electrostatic ion cyclotron turbulence. [in auroral zone] , 1980 .

[46]  R. Boswell,et al.  Magnetosphere-ionosphere coupling , 1979 .

[47]  D. Klumpar,et al.  Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves , 1979 .

[48]  E. Shelley,et al.  Observation of an ionospheric acceleration mechanism producing energetic (keV) ions primarily normal to the geomagnetic field direction , 1977 .

[49]  A. Hasegawa Kinetic properties of Alfvén waves , 1977 .

[50]  J. P. Doering,et al.  Conjugate photoelectron fluxes observed on Atmosphere Explorer C , 1977 .

[51]  J. V. Lincolneditor Geomagnetic and solar data. , 1974 .

[52]  A. A. Galeev,et al.  Nonlinear plasma theory , 1969 .

[53]  Charles F. Kennel,et al.  Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field , 1966 .

[54]  T. H. Stix,et al.  The Theory Of Plasma Waves , 1962 .