Large-signal analysis of directly modulated strongly-injection-locked whistle-geometry ring lasers

Large-signal analog modulation of a strongly injection-locked whistle-geometry semiconductor ring laser is investigated. Advantages of strong injection locking for high-fidelity large-signal modulation are confirmed through numerical modeling by comparing high-speed performance of a strongly injection-locked whistle-geometry semiconductor ring laser with that of a free-running ring laser.

[1]  S. Arahira,et al.  30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser , 1997, IEEE Photonics Technology Letters.

[2]  Xiaoxue Zhao,et al.  Optically Injection-Locked 1.55-$\mu$ m VCSELs as Upstream Transmitters in WDM-PONs , 2006, IEEE Photonics Technology Letters.

[3]  Marek Osinski,et al.  Effect of light backscattering on high-speed modulation performance in strongly injection-locked unidirectional semiconductor ring lasers , 2014, Photonics West - Optoelectronic Materials and Devices.

[4]  J.M. Liu,et al.  Enhanced modulation bandwidth in injection-locked semiconductor lasers , 1997, IEEE Photonics Technology Letters.

[5]  M. Wu,et al.  Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  L. Chrostowski,et al.  Enhancement of dynamic range in 1.55-μm VCSELs using injection locking , 2003, IEEE Photonics Technology Letters.

[7]  Athanasios Gavrielides,et al.  Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection , 1996 .

[8]  Shun Lien Chuang,et al.  Bandwidth Enhancement of Fabry-Perot Quantum-well Lasers by Injection-locking , 2006 .

[9]  28 GHz optical injection-locked 1.55 µm VCSELs , 2004 .

[10]  C. Chang-Hasnain,et al.  50-GHz optically injection-locked 1.55-/spl mu/m VCSELs , 2006, IEEE Photonics Technology Letters.

[11]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2009 .

[12]  Gennady A. Smolyakov,et al.  Reciprocity principle and nonequivalence of counterpropagating modes in whistle-geometry ring lasers , 2016, SPIE OPTO.

[13]  Siyuan Yu,et al.  Analysis of Dynamic Switching Behavior of Bistable Semiconductor Ring Lasers Triggered by Resonant Optical Pulse Injection , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Lukas Chrostowski,et al.  Injection-locked 1.55 [micro sign]m VCSELs with enhanced spur-free dynamic range , 2002 .

[15]  Richard Schatz,et al.  30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 /spl mu/m wavelength , 1997 .

[16]  Wei Shi,et al.  Monolithic Injection-Locked High-Speed Semiconductor Ring Lasers , 2008, Journal of Lightwave Technology.

[17]  Moustafa Ahmed,et al.  Large-signal analysis of analog intensity modulation of semiconductor lasers , 2008 .

[18]  C. Chang-Hasnain,et al.  Microwave performance of optically injection-locked VCSELs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[19]  M.C. Wu,et al.  Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers , 2003, MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003..

[20]  Marek Osinski,et al.  Rate equation analysis of dynamic response in strongly injection-locked semiconductor microring lasers , 2011, OPTO.

[21]  M. Osinski,et al.  High-Speed Modulation Analysis of Strongly Injection-Locked Semiconductor Ring Lasers , 2011, IEEE Journal of Quantum Electronics.

[22]  Zongfu Yu,et al.  Integrated Nonmagnetic Optical Isolators Based on Photonic Transitions $^{\ast}$ , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  M. Sorel,et al.  Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder Interferometer optical switch using quantum-well intermixing , 2005, IEEE Photonics Technology Letters.

[24]  L. Chrostowski,et al.  High extinction ratio of injection-locked 1.55-/spl mu/m VCSELs , 2006, IEEE Photonics Technology Letters.

[25]  Seng-Tiong Ho,et al.  InGaAsP-InP nanoscale waveguide-coupled microring lasers with submilliampere threshold current using Cl/sub 2/--N/sub 2/-based high-density plasma etching , 2005 .

[26]  Hongwei Chen,et al.  Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking , 2000 .

[27]  Ming C. Wu,et al.  Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths. , 2008, Optics express.

[28]  A. Gavrielides,et al.  Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers , 1995, IEEE Photonics Technology Letters.

[29]  A. Yariv,et al.  Ultra-high speed semiconductor lasers , 1985 .

[30]  K. Kawashima,et al.  Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection , 2003 .

[31]  L. Chrostowski,et al.  Improved semiconductor-laser dynamics from induced population pulsation , 2005, IEEE Journal of Quantum Electronics.

[32]  Fatih V. Celebi,et al.  Injection level dependence of the gain, refractive index variation, and alpha (α) parameter in broad-area InGaAs deep quantum-well lasers , 2006 .

[33]  Sheng-Kwang Hwang,et al.  Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection , 2003 .

[34]  Lukas Chrostowski,et al.  Injection locking of VCSELs , 2003 .

[35]  Ming C. Wu,et al.  Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection , 1998 .

[36]  S.K. Hwang,et al.  35-GHz intrinsic bandwidth for direct modulation in 1.3-/spl mu/m semiconductor lasers subject to strong injection locking , 2004, IEEE Photonics Technology Letters.