Automated leukocyte recognition using fuzzy divergence.

This paper aims at introducing an automated approach to leukocyte recognition using fuzzy divergence and modified thresholding techniques. The recognition is done through the segmentation of nuclei where Gamma, Gaussian and Cauchy type of fuzzy membership functions are studied for the image pixels. It is in fact found that Cauchy leads better segmentation as compared to others. In addition, image thresholding is modified for better recognition. Results are studied and discussed.

[1]  N. Theera-Umpon Patch-Based White Blood Cell Nucleus Segmentation Using Fuzzy Clustering , 2005 .

[2]  Leyza Baldo Dorini,et al.  A scaled morphological toggle operator for image transformations , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[3]  Paul D. Gader,et al.  System-level training of neural networks for counting white blood cells , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[4]  A. K. Ray,et al.  Fuzzy approach for color region extraction , 2003, Pattern Recognit. Lett..

[5]  Kan Jiang,et al.  A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[6]  Qingmin Liao,et al.  An accurate segmentation method for white blood cell images , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[7]  Dwi Anoraganingrum,et al.  Cell segmentation with median filter and mathematical morphology operation , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[8]  Ma Yi-de,et al.  A new method for blood cell image segmentation and counting based on PCNN and autowave , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[9]  Korris Fu-Lai Chung,et al.  Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection , 2007, Neurocomputing.

[10]  Nipon Theera-Umpon Automatic White Blood Cell Classification Using Biased-Output Neural Networks with Morphological Features , 2003 .

[11]  T. V. Sreenivas,et al.  Teager energy based blood cell segmentation , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[12]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  A. K. Ray,et al.  Threshold selection using fuzzy set theory , 2004, Pattern Recognit. Lett..

[14]  Georges Flandrin,et al.  Automated Detection of Working Area of Peripheral Blood Smears Using Mathematical Morphology , 2003, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology.

[15]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[16]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[17]  A. D. Brink,et al.  Minimum cross-entropy threshold selection , 1996, Pattern Recognit..

[18]  Luciano da Fontoura Costa,et al.  A texture approach to leukocyte recognition , 2004, Real Time Imaging.

[19]  Régis Beuscart,et al.  Image Segmentation And Classification Methods To Detect Leukemias , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[20]  C. Dunphy,et al.  Applications of flow cytometry and immunohistochemistry to diagnostic hematopathology. , 2004, Archives of pathology & laboratory medicine.

[21]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Andrew Mehnert,et al.  An improved seeded region growing algorithm , 1997, Pattern Recognit. Lett..

[23]  Paul D. Gader,et al.  Counting white blood cells using morphological granulometries , 2000, J. Electronic Imaging.

[24]  F. Scotti,et al.  Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images , 2005, CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005..

[25]  Tamalika Chaira,et al.  Fuzzy Image Processing and Applications with MATLAB , 2009 .

[26]  Malcolm C. Smith,et al.  3rd International Symposium on Communications, Control and Signal Processing , 2008 .

[27]  A. K. Ray,et al.  Segmentation using fuzzy divergence , 2003, Pattern Recognit. Lett..

[28]  Andrew G. Dempster,et al.  Analysis of infected blood cell images using morphological operators , 2002, Image Vis. Comput..

[29]  Weixin Xie,et al.  Distance measure and induced fuzzy entropy , 1999, Fuzzy Sets Syst..