Thermodynamic Bethe Ansatz past turning points: the (elliptic) sinh-Gordon model
暂无分享,去创建一个
Lucía Córdova | Stefano Negro | Fidel I. Schaposnik Massolo | F. I. Schaposnik Massolo | S. Negro | Luc'ia C'ordova
[1] M. Paulos,et al. The S-matrix bootstrap. Part I: QFT in AdS , 2016, 1607.06109.
[2] S. J. Tongeren. Introduction to the thermodynamic Bethe ansatz , 2016, 1606.02951.
[3] R. Tateo,et al. T T-deformed 2D quantum eld theories , 2016 .
[4] A. Zamolodchikov. Two-point correlation function in scaling Lee-Yang model , 1991 .
[5] A. Zamolodchikov. On the thermodynamic Bethe ansatz equation in the sinh-Gordon model , 2006 .
[7] E. Allgower,et al. Numerical path following , 1997 .
[8] K. Wilson,et al. The Renormalization group and the epsilon expansion , 1973 .
[9] M. Kruczenski,et al. A note on the S-matrix bootstrap for the 2d O(N) bosonic model , 2018, Journal of High Energy Physics.
[10] L. Bonora,et al. Conformal affine sl2 Toda field theory , 1990 .
[11] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[12] J. Penedones,et al. The S-matrix bootstrap IV: multiple amplitudes , 2019, Journal of High Energy Physics.
[13] V. Gorbenko,et al. Two-dimensional O(n) models and logarithmic CFTs , 2020, Journal of High Energy Physics.
[14] R. Conti,et al. Conserved currents and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{T}} $$\end{document}s irr , 2019, Journal of High Energy Physics.
[15] A. Zamolodchikov. MASS SCALE IN THE SINE–GORDON MODEL AND ITS REDUCTIONS , 1995 .
[16] Erich Müller,et al. Walking , 1872, Hall's journal of health.
[17] Giancarlo Camilo,et al. On factorizable S-matrices, generalized TTbar, and the Hagedorn transition , 2021, Journal of High Energy Physics.
[18] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[19] D. Kutasov,et al. $\boldsymbol {T\overline{T}}$ , $\boldsymbol {J\overline{T}}$ , $\boldsymbol{T\overline{J}}$ and string theory , 2019, Journal of Physics A: Mathematical and Theoretical.
[20] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[21] Monica Guica. An integrable Lorentz-breaking deformation of two-dimensional CFTs , 2017, SciPost Physics.
[22] R. Flauger,et al. Effective string theory revisited , 2012, 1203.1054.
[23] M. Paulos,et al. Bounding scattering of charged particles in 1+1 dimensions , 2018, Journal of High Energy Physics.
[24] Kentaroh Yoshida,et al. Gravitational perturbations as TT¯-deformations in 2D dilaton gravity systems , 2020 .
[25] V. Gryanik,et al. Two-Dimensional Quantum Field Theories Having Exact Solutions , 1976 .
[26] A. Zamolodchikov. Integrable field theory from conformal field theory , 1989 .
[27] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[28] Paul Roman,et al. The Analytic S-Matrix , 1967 .
[29] A. Zamolodchikov. Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models , 1990 .
[30] R. Hagedorn,et al. Statistical thermodynamics of strong interactions at high-energies. 2. Momentum spectra of particles produced in pp-collisions , 1965 .
[31] A. Sfondrini,et al. Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.
[32] A. Guerrieri,et al. Flux Tube S-Matrix Bootstrap. , 2019, Physical review letters.
[33] H. Verlinde,et al. Moving the CFT into the bulk with TT¯$$ T\overline{T} $$ , 2018 .
[34] A. M. Tsvelick,et al. Exact results in the theory of magnetic alloys , 1983 .
[35] A. Perelomov,et al. Quantum Mechanics: Selected Topics , 1998 .
[37] R. Flauger,et al. Solving the simplest theory of quantum gravity , 2012, 1205.6805.
[38] E. Melzer,et al. Purely elastic scattering theories and their ultraviolet limits , 1990 .
[39] A. Zamolodchikov. Resonance factorized scattering and roaming trajectories , 2006 .
[40] P. Vieira,et al. S-matrix bootstrap: Supersymmetry, Z2 , and Z4 symmetry , 2020 .
[41] Yu Nakayama,et al. Scale invariance vs conformal invariance , 2013, 1302.0884.
[42] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[43] S. Rychkov,et al. Walking, weak first-order transitions, and complex CFTs , 2018, SciPost Physics.
[44] F. Dyson,et al. LOW'S SCATTERING EQUATION FOR THE CHARGED AND NEUTRAL SCALAR THEORIES , 1956 .
[45] F. A. Smirnov,et al. On space of integrable quantum field theories , 2016, 1608.05499.
[46] P. Vieira,et al. Adding flavour to the S-matrix bootstrap , 2018, Journal of High Energy Physics.
[47] R. Conti,et al. Generalised Born-Infeld models, Lax operators and the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\o , 2018, Journal of High Energy Physics.
[48] G. Mussardo. Statistical Field Theory , 2020 .
[49] M. Paulos,et al. The S-matrix bootstrap II: two dimensional amplitudes , 2017, Journal of High Energy Physics.
[50] Walking, weak first-order transitions, and complex CFTs , 2018, Journal of High Energy Physics.
[51] M. Mezei,et al. KdV charges in TTbar theories and new models with super-Hagedorn behavior , 2019, SciPost Physics.