Thermodynamic Bethe Ansatz past turning points: the (elliptic) sinh-Gordon model

We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T T ¯ $$ \overline{\mathrm{T}} $$ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S -matrices describing the Φ 1 , 3 integrable deformation of non-unitary minimal models M $$ \mathcal{M} $$ 2 , 2 n +3 .

[1]  M. Paulos,et al.  The S-matrix bootstrap. Part I: QFT in AdS , 2016, 1607.06109.

[2]  S. J. Tongeren Introduction to the thermodynamic Bethe ansatz , 2016, 1606.02951.

[3]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[4]  A. Zamolodchikov Two-point correlation function in scaling Lee-Yang model , 1991 .

[5]  A. Zamolodchikov On the thermodynamic Bethe ansatz equation in the sinh-Gordon model , 2006 .

[7]  E. Allgower,et al.  Numerical path following , 1997 .

[8]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[9]  M. Kruczenski,et al.  A note on the S-matrix bootstrap for the 2d O(N) bosonic model , 2018, Journal of High Energy Physics.

[10]  L. Bonora,et al.  Conformal affine sl2 Toda field theory , 1990 .

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  J. Penedones,et al.  The S-matrix bootstrap IV: multiple amplitudes , 2019, Journal of High Energy Physics.

[13]  V. Gorbenko,et al.  Two-dimensional O(n) models and logarithmic CFTs , 2020, Journal of High Energy Physics.

[14]  R. Conti,et al.  Conserved currents and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{T}} $$\end{document}s irr , 2019, Journal of High Energy Physics.

[15]  A. Zamolodchikov MASS SCALE IN THE SINE–GORDON MODEL AND ITS REDUCTIONS , 1995 .

[16]  Erich Müller,et al.  Walking , 1872, Hall's journal of health.

[17]  Giancarlo Camilo,et al.  On factorizable S-matrices, generalized TTbar, and the Hagedorn transition , 2021, Journal of High Energy Physics.

[18]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[19]  D. Kutasov,et al.  $\boldsymbol {T\overline{T}}$ , $\boldsymbol {J\overline{T}}$ , $\boldsymbol{T\overline{J}}$ and string theory , 2019, Journal of Physics A: Mathematical and Theoretical.

[20]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[21]  Monica Guica An integrable Lorentz-breaking deformation of two-dimensional CFTs , 2017, SciPost Physics.

[22]  R. Flauger,et al.  Effective string theory revisited , 2012, 1203.1054.

[23]  M. Paulos,et al.  Bounding scattering of charged particles in 1+1 dimensions , 2018, Journal of High Energy Physics.

[24]  Kentaroh Yoshida,et al.  Gravitational perturbations as TT¯-deformations in 2D dilaton gravity systems , 2020 .

[25]  V. Gryanik,et al.  Two-Dimensional Quantum Field Theories Having Exact Solutions , 1976 .

[26]  A. Zamolodchikov Integrable field theory from conformal field theory , 1989 .

[27]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[28]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[29]  A. Zamolodchikov Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state potts and Lee-Yang models , 1990 .

[30]  R. Hagedorn,et al.  Statistical thermodynamics of strong interactions at high-energies. 2. Momentum spectra of particles produced in pp-collisions , 1965 .

[31]  A. Sfondrini,et al.  Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.

[32]  A. Guerrieri,et al.  Flux Tube S-Matrix Bootstrap. , 2019, Physical review letters.

[33]  H. Verlinde,et al.  Moving the CFT into the bulk with TT¯$$ T\overline{T} $$ , 2018 .

[34]  A. M. Tsvelick,et al.  Exact results in the theory of magnetic alloys , 1983 .

[35]  A. Perelomov,et al.  Quantum Mechanics: Selected Topics , 1998 .

[36]  B. Bonn T T , 2018 .

[37]  R. Flauger,et al.  Solving the simplest theory of quantum gravity , 2012, 1205.6805.

[38]  E. Melzer,et al.  Purely elastic scattering theories and their ultraviolet limits , 1990 .

[39]  A. Zamolodchikov Resonance factorized scattering and roaming trajectories , 2006 .

[40]  P. Vieira,et al.  S-matrix bootstrap: Supersymmetry, Z2 , and Z4 symmetry , 2020 .

[41]  Yu Nakayama,et al.  Scale invariance vs conformal invariance , 2013, 1302.0884.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  S. Rychkov,et al.  Walking, weak first-order transitions, and complex CFTs , 2018, SciPost Physics.

[44]  F. Dyson,et al.  LOW'S SCATTERING EQUATION FOR THE CHARGED AND NEUTRAL SCALAR THEORIES , 1956 .

[45]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[46]  P. Vieira,et al.  Adding flavour to the S-matrix bootstrap , 2018, Journal of High Energy Physics.

[47]  R. Conti,et al.  Generalised Born-Infeld models, Lax operators and the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\o , 2018, Journal of High Energy Physics.

[48]  G. Mussardo Statistical Field Theory , 2020 .

[49]  M. Paulos,et al.  The S-matrix bootstrap II: two dimensional amplitudes , 2017, Journal of High Energy Physics.

[50]  Walking, weak first-order transitions, and complex CFTs , 2018, Journal of High Energy Physics.

[51]  M. Mezei,et al.  KdV charges in TTbar theories and new models with super-Hagedorn behavior , 2019, SciPost Physics.