Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000.

This book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.

[1]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[2]  Maurizio Serva,et al.  Clustering of Volatility as a Multiscale Phenomenon , 1999 .

[3]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  M. Potters,et al.  Financial markets as adaptive ecosystems , 1997 .

[5]  Misako Takayasu,et al.  STABLE INFINITE VARIANCE FLUCTUATIONS IN RANDOMLY AMPLIFIED LANGEVIN SYSTEMS , 1997 .

[6]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[7]  F. Eugene,et al.  FAMA, . Efficient Capital Markets: of Theory and Empirical Work, Journal of Finance, , . , 1970 .

[8]  K. French Stock returns and the weekend effect , 1980 .

[9]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[10]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[11]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[12]  L. Crovini,et al.  Metrology at the Frontiers of Physics and Technology , 1992 .

[13]  R. Mantegna,et al.  Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  David Rahman,et al.  Applications of physics in financial analysis , 2001 .

[15]  Paul H. Cootner The random character of stock market prices , 1968 .

[16]  Dietrich Stauffer,et al.  Crossover in the Cont–Bouchaud percolation model for market fluctuations , 1998 .

[17]  M. Marsili,et al.  A Prototype Model of Stock Exchange , 1997, cond-mat/9709118.

[18]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[19]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[22]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[23]  Angelo Vulpiani,et al.  A GENERAL METHODOLOGY TO PRICE AND HEDGE DERIVATIVES IN INCOMPLETE MARKETS , 1998 .

[24]  M. Dacorogna,et al.  A geographical model for the daily and weekly seasonal volatility in the foreign exchange market , 1993 .

[25]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[26]  Angelo Vulpiani,et al.  Optimal Strategies for Prudent Investors , 1998 .

[27]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[28]  R. Jarrow,et al.  Pricing Options On Risky Assets In A Stochastic Interest Rate Economy , 1992 .

[29]  J. Scheinkman,et al.  Aggregate Fluctuations from Independent Sectoral Shocks: Self-Organized Criticality in a Model of Production and Inventory Dynamics , 1992 .

[30]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[31]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[32]  P. Cizeau,et al.  Volatility distribution in the S&P500 stock index , 1997, cond-mat/9708143.

[33]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[34]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[35]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[36]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[37]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[38]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: I Epirical results for company growth , 1997, cond-mat/9702082.

[39]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[40]  T. Nijman,et al.  Temporal Aggregation of GARCH Processes. , 1993 .

[41]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[42]  W. Andrew,et al.  LO, and A. , 1988 .

[43]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[44]  P. Tchebycheff,et al.  Sur deux théorèmes relatifs aux probabilités , 1890 .

[45]  V. Akgiray Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts , 1989 .

[46]  Koichi Hamada,et al.  Statistical properties of deterministic threshold elements - the case of market price , 1992 .

[47]  J. Bouchaud,et al.  Rational Decisions, Random Matrices and Spin Glasses , 1998, cond-mat/9801209.

[48]  D. Sornette,et al.  Causal cascade in the stock market from the ``infrared'' to the ``ultraviolet'' , 1997, cond-mat/9708012.

[49]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[50]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[51]  Andrew Matacz,et al.  Financial Modeling and Option Theory with the Truncated Levy Process , 1997, cond-mat/9710197.

[52]  Didier Sornette,et al.  A hierarchical model of financial crashes , 1998 .

[53]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Kiyosi Itô,et al.  On stochastic processes (I) , 1941 .

[55]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[56]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[57]  Adrian Pagan,et al.  The econometrics of financial markets , 1996 .

[58]  Gilbert Saporta,et al.  L'analyse des données , 1981 .

[59]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[60]  Enrico Scalas,et al.  Volatility in the Italian Stock Market: An Empirical Study , 1999 .

[61]  T. Lux Time variation of second moments from a noise trader/infection model , 1997 .

[62]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[63]  Charles Trzcinka,et al.  On the Number of Factors in the Arbitrage Pricing Model , 1986 .

[64]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  M. Levy,et al.  POWER LAWS ARE LOGARITHMIC BOLTZMANN LAWS , 1996, adap-org/9607001.

[66]  R. Mantegna Lévy walks and enhanced diffusion in Milan stock exchange , 1991 .

[67]  Darrell Duffie,et al.  Implementing Arrow-Debreu equilbria by continuous trading of a few long-lived securities , 1985 .

[68]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[69]  L. Kadanoff From simulation model to public policy , 1971 .

[70]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[71]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[72]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[73]  Gregory Connor,et al.  A Test for the Number of Factors in an Approximate Factor Model , 1993 .

[74]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[75]  Rosario N. Mantegna,et al.  Stock market dynamics and turbulence: parallel analysis of fluctuation phenomena , 1997 .

[76]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[77]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[78]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[79]  A. Lo,et al.  When are Contrarian Profits Due to Stock Market Overreaction? , 1989 .

[80]  C. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .

[81]  Elliott W. Montroll,et al.  Introduction to Quantitative Aspects of Social Phenomena , 1975 .

[82]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[83]  Dietrich Stauffer Can percolation theory be applied to the stock market , 1998 .

[84]  P. Gopikrishnan,et al.  Inverse cubic law for the distribution of stock price variations , 1998, cond-mat/9803374.

[85]  Zhang,et al.  Products of random matrices and investment strategies. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  Yicheng Zhang,et al.  On the minority game: Analytical and numerical studies , 1998, cond-mat/9805084.

[87]  V. Plerou,et al.  Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series , 1999, cond-mat/9902283.

[88]  W. Press Flicker noises in astronomy and elsewhere. , 1978 .

[89]  D. West Introduction to Graph Theory , 1995 .

[90]  M. Shlesinger,et al.  Comment on "Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight" , 1995, Physical review letters.

[91]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[92]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[93]  Rama Cont,et al.  A Langevin approach to stock market fluctuations and crashes , 1998 .

[94]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[95]  Hideki Takayasu,et al.  Dynamic numerical models of stock market price: from microscopic determinism to macroscopic randomness , 1998 .

[96]  Barry N. Taylor,et al.  THE 1986 ADJUSTMENT OF THE FUNDAMENTAL PHYSICAL CONSTANTS: A REPORT OF THE CODATA TASK GROUP ON FUNDAMENTAL CONSTANTS , 1987 .

[97]  H. Eugene Stanley,et al.  Universal features in the growth dynamics of complex organizations , 1998, cond-mat/9804100.

[98]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[99]  J. Bouchaud,et al.  Scaling in Stock Market Data: Stable Laws and Beyond , 1997, cond-mat/9705087.

[100]  M. Paczuski,et al.  Price Variations in a Stock Market with Many Agents , 1997 .

[101]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[102]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[103]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments. , 1960 .

[104]  T. Lux The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions , 1998 .

[105]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[106]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[107]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[108]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[109]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[110]  Jean-Philippe Bouchaud,et al.  Théorie des risques financiers , 1997 .

[111]  Didier Sornette LARGE DEVIATIONS AND PORTFOLIO OPTIMIZATION , 1998 .

[112]  Sergei Maslov,et al.  Dynamical optimization theory of a diversified portfolio , 1998 .

[113]  Didier Sornette,et al.  The Black-Scholes option pricing problem in mathematical finance : generalization and extensions for a large class of stochastic processes , 1994 .

[114]  Sergei Maslov,et al.  Probability Distribution of Drawdowns in Risky Investments , 1998 .

[115]  Stephen J. Brown The Number of Factors in Security Returns , 1989 .

[116]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[117]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[118]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[119]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[120]  Marcel Ausloos,et al.  Coherent and random sequences in financial fluctuations , 1997 .

[121]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[122]  F. Eugene FAMA, . The Behavior of Stock-Market Prices, Journal of Business, , . , 1965 .

[123]  P. Cizeau,et al.  CORRELATIONS IN ECONOMIC TIME SERIES , 1997, cond-mat/9706021.

[124]  S. Havlin,et al.  Power law scaling for a system of interacting units with complex internal structure , 1998 .

[125]  Wentian Li,et al.  ABSENCE OF 1/f SPECTRA IN DOW JONES DAILY AVERAGE , 1991 .

[126]  Kenji Okuyama,et al.  Country Dependence on Company Size Distributions and a Numerical Model Based on Competition and Cooperation , 1998 .

[127]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[128]  Rosario N. Mantegna,et al.  Turbulence and financial markets , 1996, Nature.

[129]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[130]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[131]  M. Cassandro,et al.  Critical point behaviour and probability theory , 1978 .

[132]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[133]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[134]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[135]  Stephen Figlewski Options Arbitrage in Imperfect Markets , 1989 .

[136]  Moshe Levy,et al.  Microscopic Simulation of the Stock Market: the Effect of Microscopic Diversity , 1995 .

[137]  Rama Cont Scaling and correlation in financial data , 1997 .

[138]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[139]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[140]  P. Cizeau,et al.  Statistical properties of the volatility of price fluctuations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[141]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .