On the Power of Periodic Iteration of Morphisms
暂无分享,去创建一个
[1] Patrick Morton,et al. Arithmetic properties of periodic points of quadratic maps, II , 1992 .
[2] Bjorn Poonen,et al. Cycles of quadratic polynomials and rational points on a genus-$2$ curve , 1995 .
[3] Joachim Wehler. K3-surfaces with Picard number 2 , 1988 .
[4] I. N. Baker. Fixpoints of Polynomials and Rational Functions , 1964 .
[5] Franco Vivaldi,et al. Galois theory of periodic orbits of rational maps , 1992 .
[6] T. Pezda. Cycles of polynomial mappings in several variables , 1994 .
[7] Joseph H. Silverman,et al. Rational periodic points of rational functions , 1994 .
[8] Arto Salomaa. Jewels of formal language theory , 1981 .
[9] Joseph H. Silverman,et al. Periodic points, multiplicities, and dynamical units. , 1995 .
[10] Patrick Morton,et al. The Galois Theory of Periodic Points of Polynomial Maps , 1994 .
[11] The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: A Refined Conjecture , 1995, math/9512217.
[12] T. Pezda. Polynomial cycles in certain local domains , 1994 .
[13] Patrick Morton,et al. Bifurcations and discriminants for polynomial maps , 1995 .
[14] Andrzej Ehrenfeucht,et al. Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..
[15] Juhani Karhumäki,et al. Alternating Iteration of Morphisms and the Kolakovski Sequence , 1992 .
[16] Karel Culik,et al. Iterative Devices Generating Infinite Words , 1992, STACS.
[17] J. Silverman. Rational points on K3 surfaces: A new canonical height , 1991 .