On the Power of Periodic Iteration of Morphisms

In this paper we show that there exist infinite words generated by a periodic application of a finite number of morphisms such that they cannot be generated by iterating only one morphism and then applying a coding.

[1]  Patrick Morton,et al.  Arithmetic properties of periodic points of quadratic maps, II , 1992 .

[2]  Bjorn Poonen,et al.  Cycles of quadratic polynomials and rational points on a genus-$2$ curve , 1995 .

[3]  Joachim Wehler K3-surfaces with Picard number 2 , 1988 .

[4]  I. N. Baker Fixpoints of Polynomials and Rational Functions , 1964 .

[5]  Franco Vivaldi,et al.  Galois theory of periodic orbits of rational maps , 1992 .

[6]  T. Pezda Cycles of polynomial mappings in several variables , 1994 .

[7]  Joseph H. Silverman,et al.  Rational periodic points of rational functions , 1994 .

[8]  Arto Salomaa Jewels of formal language theory , 1981 .

[9]  Joseph H. Silverman,et al.  Periodic points, multiplicities, and dynamical units. , 1995 .

[10]  Patrick Morton,et al.  The Galois Theory of Periodic Points of Polynomial Maps , 1994 .

[11]  The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: A Refined Conjecture , 1995, math/9512217.

[12]  T. Pezda Polynomial cycles in certain local domains , 1994 .

[13]  Patrick Morton,et al.  Bifurcations and discriminants for polynomial maps , 1995 .

[14]  Andrzej Ehrenfeucht,et al.  Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..

[15]  Juhani Karhumäki,et al.  Alternating Iteration of Morphisms and the Kolakovski Sequence , 1992 .

[16]  Karel Culik,et al.  Iterative Devices Generating Infinite Words , 1992, STACS.

[17]  J. Silverman Rational points on K3 surfaces: A new canonical height , 1991 .