The H-scan format for classification of ultrasound scattering

Traditional B-Scan images show the envelope of received echoes as a grey scale image. The echoes are produced from specular reflections and scattering sites where changes in acoustic impedance occur (Cobbold, Foundations of Biomedical Ultrasound, Oxford Press, 2007). A long-standing area of interest concerns the frequency dependence of scatterers within different tissues, organs, and the blood.

[1]  William D O'Brien,et al.  Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor. , 2002, The Journal of the Acoustical Society of America.

[2]  Robert C. Waag,et al.  A Review of Tissue Characterization from Ultrasonic Scattering , 1984, IEEE Transactions on Biomedical Engineering.

[3]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Piero Tortoli,et al.  Ultrasound contrast agent imaging: Real-time imaging of the superharmonics , 2015 .

[5]  K J Parker,et al.  Shear wave dispersion behaviors of soft, vascularized tissues from the microchannel flow model , 2016, Physics in medicine and biology.

[6]  Timothy J Hall,et al.  Quantitative Assessment of In Vivo Breast Masses Using Ultrasound Attenuation and Backscatter , 2013, Ultrasonic imaging.

[7]  Jonathan Mamou,et al.  Quantitative Ultrasound in Soft Tissues , 2013, Springer Netherlands.

[8]  Ronald H. Silverman,et al.  Ultrasonic spectrum analysis for tissue assays and therapy evaluation , 1997, Int. J. Imaging Syst. Technol..

[9]  M. Oelze,et al.  An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Kevin J Parker,et al.  Enhanced resolution pulse-echo imaging with stabilized pulses , 2016, Journal of medical imaging.

[11]  R. Cobbold Foundations of Biomedical Ultrasound , 2006 .

[12]  J. Suri,et al.  Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms , 2011, Technology in cancer research & treatment.

[13]  R C Waag,et al.  Normalization of ultrasonic scattering measurements to obtain average differential scattering cross sections for tissues. , 1983, The Journal of the Acoustical Society of America.

[14]  A. Poularikas The transforms and applications handbook , 2000 .

[15]  K J Parker,et al.  Scattering and reflection identification in H-scan images , 2016, Physics in medicine and biology.

[16]  E. Feleppa,et al.  Statistical framework for ultrasonic spectral parameter imaging. , 1997, Ultrasound in medicine & biology.

[17]  D. Rubens,et al.  Mouse liver dispersion for the diagnosis of early-stage Fatty liver disease: a 70-sample study. , 2014, Ultrasound in medicine & biology.

[18]  Goutam Ghoshal,et al.  On the estimation of backscatter coefficients using single-element focused transducers. , 2011, The Journal of the Acoustical Society of America.

[19]  J. G. Miller,et al.  Anisotropy of the ultrasonic attenuation in soft tissues: measurements in vitro. , 1990, The Journal of the Acoustical Society of America.

[20]  N. de Jong,et al.  20 years of ultrasound contrast agent modeling , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  B. P. Lathi,et al.  Modern Digital and Analog Communication Systems , 1983 .

[22]  Guy Cloutier,et al.  Unifying Concepts of Statistical and Spectral Quantitative Ultrasound Techniques , 2016, IEEE Transactions on Medical Imaging.

[23]  Roberto J Lavarello,et al.  Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques. , 2013, Ultrasound in medicine & biology.

[24]  Gabriella Cincotti,et al.  Frequency decomposition and compounding of ultrasound medical images with wavelet packets , 2001, IEEE Transactions on Medical Imaging.

[25]  Spencer Brown,et al.  Tissue Engineering (Academic Press Series in Biomedical Engineering) , 2010 .

[26]  R C Waag,et al.  Wave space interpretation of scattered ultrasound. , 1988, Ultrasound in medicine & biology.

[27]  J. G. Miller,et al.  Anisotropy of the ultrasonic backscatter of myocardial tissue: I. Theory and measurements in vitro. , 1988, The Journal of the Acoustical Society of America.

[28]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[29]  Mattias Mårtensson,et al.  ULTRASOUND IMAGING SYSTEMS , 2011 .

[30]  Juvenal Ormachea,et al.  Shear Wave Elastography in the Living, Perfused, Post-Delivery Placenta. , 2016, Ultrasound in medicine & biology.

[31]  R C Waag,et al.  Ultrasonic scattering properties of three random media with implications for tissue characterization. , 1984, The Journal of the Acoustical Society of America.

[32]  C. Burckhardt Speckle in ultrasound B-mode scans , 1978, IEEE Transactions on Sonics and Ultrasonics.

[33]  Kevin J. Parker The H-scan format for classification of ultrasound scattering , 2017 .

[34]  R. F. Wagner,et al.  Describing small-scale structure in random media using pulse-echo ultrasound. , 1990, The Journal of the Acoustical Society of America.

[35]  K. Shung,et al.  Diagnostic Ultrasound: Imaging and Blood Flow Measurements , 2005 .

[36]  G E Trahey,et al.  A Quantitative Approach to Speckle Reduction via Frequency Compounding , 1986, Ultrasonic imaging.

[37]  Ernest J. Feleppa,et al.  Ultrasonic spectral-parameter imaging of the prostate , 1997, Int. J. Imaging Syst. Technol..

[38]  R. Gramiak,et al.  Frequency-dependent angle scattering of ultrasound by liver. , 1982, The Journal of the Acoustical Society of America.