Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.

[1]  T. P. Romão,et al.  EBV and CMV Viral Load in Rheumatoid Arthritis and Their Role Associated Sjögren's Syndrome. , 2020, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[2]  L. Sechi,et al.  Antibody response to homologous epitopes of Epstein-Barr virus, Mycobacterium avium subsp. paratuberculosis and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis , 2020, Journal of translational autoimmunity.

[3]  P. Korsten,et al.  Flare or foe? - Mycobacterium marinum infection mimicking rheumatoid arthritis tenosynovitis: case report and literature review , 2020, BMC Rheumatology.

[4]  Vanitha Janakiraman,et al.  A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis , 2020, Scientific Reports.

[5]  T. Huizinga,et al.  An overview of autoantibodies in rheumatoid arthritis. , 2020, Journal of autoimmunity.

[6]  L. Sechi,et al.  PtpA and PknG Proteins Secreted by Mycobacterium avium subsp. paratuberculosis are Recognized by Sera from Patients with Rheumatoid Arthritis: A Case–Control Study , 2019, Journal of inflammation research.

[7]  Elias A. Rahal,et al.  Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice , 2019, Journal of Virology.

[8]  M. Garshasbi,et al.  Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. , 2019, Gene.

[9]  F. Wolfe,et al.  Serious infection risk in rheumatoid arthritis compared with non-inflammatory rheumatic and musculoskeletal diseases: a US national cohort study , 2019, RMD Open.

[10]  Elias A. Rahal,et al.  The role of viral infections in the development of autoimmune diseases , 2019, Critical reviews in microbiology.

[11]  A. Vilas,et al.  Infection by Mycobacterium chelonae at the site of administration of sarilumab for rheumatoid arthritis. , 2019, Rheumatology.

[12]  G. Martin-Blondel,et al.  Olecranon bursitis secondary to Mycobacterium europaeum infection in a patient receiving immunosuppressive drugs for rheumatoid arthritis. , 2019, Medecine et maladies infectieuses.

[13]  A. Alunno,et al.  One year in review 2019: pathogenesis of rheumatoid arthritis. , 2019, Clinical and experimental rheumatology.

[14]  E. Theander,et al.  Increased antibody levels to stage-specific Epstein–Barr virus antigens in systemic autoimmune diseases reveal a common pathology , 2019, Scandinavian journal of clinical and laboratory investigation.

[15]  S. Naser,et al.  Genetic polymorphisms in tumour necrosis factor receptors (TNFRSF1A/1B) illustrate differential treatment response to TNFα inhibitors in patients with Crohn’s disease , 2019, BMJ open gastroenterology.

[16]  I. Auger,et al.  Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat , 2019, Annals of the rheumatic diseases.

[17]  L. Andrade,et al.  Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis , 2019, Advances in Rheumatology.

[18]  J. Anaya,et al.  Molecular mimicry and autoimmunity. , 2018, Journal of autoimmunity.

[19]  Deepali Thaper,et al.  Molecular mimicry: An explanation for autoimmune diseases and infertility , 2018, Scandinavian journal of immunology.

[20]  Elias A. Rahal,et al.  Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9 , 2018, PloS one.

[21]  M. Leirisalo-Repo,et al.  Serum Epstein-Barr virus DNA, detected by droplet digital PCR, correlates with disease activity in patients with rheumatoid arthritis. , 2018, Clinical and experimental rheumatology.

[22]  A. Alunno,et al.  One year in review 2018: pathogenesis of rheumatoid arthritis. , 2018, Clinical and experimental rheumatology.

[23]  N. Tsuchiya,et al.  Biomarker for nontuberculous mycobacterial pulmonary disease in patients with rheumatoid arthritis: Anti-glycopeptidolipid core antigen immunoglobulin A antibodies , 2018, Modern rheumatology.

[24]  E. Theander,et al.  Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis , 2018, Scientific Reports.

[25]  S. Gagneux Ecology and evolution of Mycobacterium tuberculosis , 2018, Nature Reviews Microbiology.

[26]  L. Sechi,et al.  Rheumatoid arthritis patient antibodies highly recognize IL-2 in the immune response pathway involving IRF5 and EBV antigens , 2018, Scientific Reports.

[27]  S. Naser,et al.  Polymorphisms in Protein Tyrosine Phosphatase Non-receptor Type 2 and 22 (PTPN2/22) Are Linked to Hyper-Proliferative T-Cells and Susceptibility to Mycobacteria in Rheumatoid Arthritis , 2018, Front. Cell. Infect. Microbiol..

[28]  L. Sechi,et al.  Interferon regulatory factor 5 is a potential target of autoimmune response triggered by Epstein-barr virus and Mycobacterium avium subsp. paratuberculosis in rheumatoid arthritis: investigating a mechanism of molecular mimicry. , 2018, Clinical and experimental rheumatology.

[29]  Hyerin Jung,et al.  Arthritic role of Porphyromonas gingivalis in collagen-induced arthritis mice , 2017, PloS one.

[30]  J. Esdaile,et al.  Prevalence of Co-existing Autoimmune Disease in Rheumatoid Arthritis: A Cross-Sectional Study , 2017, Advances in Therapy.

[31]  X. Zhong,et al.  IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection , 2017, EBioMedicine.

[32]  J. Utikal,et al.  Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes , 2017, Scientific Reports.

[33]  L. Sechi,et al.  Identification of a HERV‐K env surface peptide highly recognized in Rheumatoid Arthritis (RA) patients: a cross‐sectional case–control study , 2017, Clinical and experimental immunology.

[34]  J. Alpern,et al.  Prosthetic Joint Infection due to Mycobacterium avium-intracellulare in a Patient with Rheumatoid Arthritis: A Case Report and Review of the Literature , 2017, Case reports in infectious diseases.

[35]  D. Fox,et al.  TLRs, future potential therapeutic targets for RA. , 2017, Autoimmunity reviews.

[36]  J. Norris,et al.  Genetic and environmental risk factors for rheumatoid arthritis. , 2017, Best practice & research. Clinical rheumatology.

[37]  L. Klareskog,et al.  The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting , 2016, Nature reviews. Immunology.

[38]  S. Yamasaki,et al.  Porphyromonas gingivalis infection exacerbates the onset of rheumatoid arthritis in SKG mice , 2016, Clinical and experimental immunology.

[39]  Le A. Trinh,et al.  Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. , 2016, Immunity.

[40]  M. Farrugia,et al.  The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells , 2016, Journal of clinical and translational research.

[41]  M. Arleevskaya,et al.  How Rheumatoid Arthritis Can Result from Provocation of the Immune System by Microorganisms and Viruses , 2016, Front. Microbiol..

[42]  L. Kesavalu,et al.  Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10.RIII mice , 2016, Arthritis Research & Therapy.

[43]  Kazuhiko Yamamoto,et al.  Immune responses to Mycobacterial heat shock protein 70 accompany self-reactivity to human BiP in rheumatoid arthritis , 2016, Scientific Reports.

[44]  A. Nayarisseri,et al.  Insights from the predicted epitope similarity between Mycobacterium tuberculosis virulent factors and its human homologs , 2015, Bioinformation.

[45]  E. Luca,et al.  Increased Epstein-Barr Virus DNA Load and Antibodies Against EBNA1 and EA in Sardinian Patients with Rheumatoid Arthritis. , 2015 .

[46]  Jin-Hee Kim,et al.  Association between anti-Porphyromonas gingivalis or anti-α-enolase antibody and severity of periodontitis or rheumatoid arthritis (RA) disease activity in RA , 2015, BMC Musculoskeletal Disorders.

[47]  Der-Yuan Chen,et al.  Risk for Mycobacterial Disease among Patients with Rheumatoid Arthritis, Taiwan, 2001–2011 , 2015, Emerging infectious diseases.

[48]  E. Lubberts,et al.  The IL-23–IL-17 axis in inflammatory arthritis , 2015, Nature Reviews Rheumatology.

[49]  E. Lubberts,et al.  The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. , 2015, Cytokine.

[50]  Y. Toyama,et al.  Mycobacterium tuberculosis promotes arthritis development through toll-like receptor 2 , 2015, Journal of Bone and Mineral Metabolism.

[51]  Sarah L. Gaffen,et al.  The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing , 2014, Nature Reviews Immunology.

[52]  T. Kawai,et al.  Porphyromonas gingivalis Exacerbates Ligature-Induced, RANKL-Dependent Alveolar Bone Resorption via Differential Regulation of Toll-Like Receptor 2 (TLR2) and TLR4 , 2014, Infection and Immunity.

[53]  L. Sechi,et al.  Mycobacterium tuberculosis lipoarabinomannan antibodies are associated to rheumatoid arthritis in Sardinian patients , 2014, Clinical Rheumatology.

[54]  A. Ebringer,et al.  Rheumatoid arthritis is caused by a Proteus urinary tract infection , 2014, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[55]  V. Holers,et al.  When and where does inflammation begin in rheumatoid arthritis? , 2014, Current opinion in rheumatology.

[56]  B. Godley,et al.  Lipopolysaccharide increases the incidence of collagen-induced arthritis in mice through induction of protease HTRA-1 expression. , 2013, Arthritis and rheumatism.

[57]  Tariq Ahmad,et al.  Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway , 2013, Cell.

[58]  A. Mobasheri,et al.  Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis , 2013, Arthritis Research & Therapy.

[59]  R. Jonsson,et al.  Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD) , 2013, PLoS pathogens.

[60]  P. Cattani,et al.  Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue , 2013, Arthritis Research & Therapy.

[61]  F. Baas,et al.  Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity , 2013, Annals of the rheumatic diseases.

[62]  R. Zubarev,et al.  Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis , 2013, Annals of the rheumatic diseases.

[63]  G. Matsuda,et al.  Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases , 2013, Pathogens.

[64]  Xixi Ma,et al.  TNF inhibitor therapy for rheumatoid arthritis (Review) , 2013 .

[65]  C. Dow M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity , 2012, Autoimmune diseases.

[66]  K. Horiuchi,et al.  Enhanced susceptibility to lipopolysaccharide-induced arthritis and endotoxin shock in interleukin-32 alpha transgenic mice through induction of tumor necrosis factor alpha , 2012, Arthritis Research & Therapy.

[67]  J. Agrewala,et al.  Potential T cell epitopes of Mycobacterium tuberculosis that can instigate molecular mimicry against host: implications in autoimmune pathogenesis , 2012, BMC Immunology.

[68]  Georg Schett,et al.  The pathogenesis of rheumatoid arthritis. , 2011, The New England journal of medicine.

[69]  S. Alzabin,et al.  Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. , 2011, Arthritis and rheumatism.

[70]  M. Takei,et al.  Epstein-Barr Virus Induces Erosive Arthritis in Humanized Mice , 2011, PloS one.

[71]  S. Jancar,et al.  Mycoplasmal lipid-associated membrane proteins and Mycoplasma arthritidis mitogen recognition by serum antibodies from patients with rheumatoid arthritis , 2011, Rheumatology International.

[72]  T. Huizinga,et al.  Genetics of rheumatoid arthritis: what have we learned? , 2011, Immunogenetics.

[73]  R. Wait,et al.  Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. , 2010, Arthritis and rheumatism.

[74]  T. Pincus,et al.  Rheumatoid Arthritis , 2010, Annals of Internal Medicine.

[75]  A. Mustafa,et al.  In silico Binding Predictions for Identification of HLA-DR-Promiscuous Regions and Epitopes of Mycobacterium tuberculosis Protein MPT64 (Rv1980c) and Their Recognition by Human Th1 Cells , 2010, Medical Principles and Practice.

[76]  A. Hocke,et al.  Induced Apoptosis of Chondrocytes by Porphyromonas gingivalis as a Possible Pathway for Cartilage Loss in Rheumatoid Arthritis , 2010, Calcified Tissue International.

[77]  S. Schreiber,et al.  The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement , 2010, European Respiratory Journal.

[78]  P. Preshaw,et al.  Expression and regulation of interleukin‐33 in human monocytes , 2010, Immunology.

[79]  P. Bartold,et al.  Effect of Porphyromonas gingivalis-induced inflammation on the development of rheumatoid arthritis. , 2010, Journal of clinical periodontology.

[80]  Y. Shoenfeld,et al.  Can Lupus Flares be Associated with Tuberculosis Infection? , 2010, Clinical reviews in allergy & immunology.

[81]  A. Ebringer,et al.  Rheumatoid arthritis, Proteus, anti-CCP antibodies and Karl Popper. , 2010, Autoimmunity reviews.

[82]  R. V. Van Uitert,et al.  The anti-cyclic citrullinated peptide response in tuberculosis patients is not citrulline-dependent and sensitive to treatment , 2010, Arthritis research & therapy.

[83]  T. Shim,et al.  Anti-cyclic citrulline peptide antibody in non-tuberculous mycobacteria sera: a negative association , 2010, Clinical Rheumatology.

[84]  J. Loyola-Rodríguez,et al.  Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. , 2009, Journal of clinical periodontology.

[85]  R. Pope,et al.  The role of Toll-like receptors in rheumatoid arthritis , 2009, Current rheumatology reports.

[86]  J. Agrewala,et al.  In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde? , 2009, Expert review of proteomics.

[87]  M. Gazouli,et al.  Linking Chronic Infection and Autoimmune Diseases: Mycobacterium avium Subspecies paratuberculosis, SLC11A1 Polymorphisms and Type-1 Diabetes Mellitus , 2009, PloS one.

[88]  B. Tzang,et al.  Anti-human parvovirus B19 nonstructural protein antibodies in patients with rheumatoid arthritis. , 2009, Clinica chimica acta; international journal of clinical chemistry.

[89]  Chih-Cheng Lai,et al.  Arthritis caused by Mycobacterium terrae in a patient with rheumatoid arthritis. , 2009, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[90]  J. J. Taylor,et al.  Differential expression of immunoregulatory genes in monocytes in response to Porphyromonas gingivalis and Escherichia coli lipopolysaccharide , 2009, Clinical and experimental immunology.

[91]  L. Czirják,et al.  Protein tyrosine phosphatase gene C1858T allele confers risk for rheumatoid arthritis in Hungarian subjects , 2009, Rheumatology International.

[92]  K. Brown,et al.  Rheumatoid arthritis (RA)-specific autoantibodies in patients with interstitial lung disease and absence of clinically apparent articular RA , 2009, Clinical Rheumatology.

[93]  G. Hatemi,et al.  NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis , 2009, International journal of immunogenetics.

[94]  S. Miller,et al.  The role of infections in autoimmune disease , 2009, Clinical and experimental immunology.

[95]  R. Caporali,et al.  DMARDS and infections in rheumatoid arthritis. , 2008, Autoimmunity reviews.

[96]  P. Tak,et al.  Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. , 2008, Arthritis and rheumatism.

[97]  M. Feldmann,et al.  Inhibitors of TLR8 Reduce TNF Production from Human Rheumatoid Synovial Membrane Cultures1 , 2008, The Journal of Immunology.

[98]  Iain B McInnes,et al.  Evidence that cytokines play a role in rheumatoid arthritis. , 2008, The Journal of clinical investigation.

[99]  R. Wait,et al.  Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. , 2008, Arthritis and rheumatism.

[100]  Jinxia Zhao,et al.  Prevalence and significance of antibodies to citrullinated human papilloma virus-47 E2345-362 in rheumatoid arthritis. , 2008, Journal of autoimmunity.

[101]  M. Gazouli,et al.  NRAMP1 Polymorphism and Viral Factors in Sardinian Multiple Sclerosis Patients , 2008, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[102]  M. Silverberg,et al.  Population‐based case‐control study of alpha 1‐antitrypsin and SLC11A1 in Crohn's disease and ulcerative colitis , 2008, Inflammatory bowel diseases.

[103]  J. Lünemann,et al.  Increased Frequency of EBV-Specific Effector Memory CD8+ T Cells Correlates with Higher Viral Load in Rheumatoid Arthritis1 , 2008, The Journal of Immunology.

[104]  M. Kowalski,et al.  Increased Responsiveness to Toll-Like Receptor 4 Stimulation in Peripheral Blood Mononuclear Cells from Patients with Recent Onset Rheumatoid Arthritis , 2008, Mediators of inflammation.

[105]  T. Yoshikawa,et al.  Mycoplasma fermentans glycolipid-antigen as a pathogen of rheumatoid arthritis. , 2008, Biochemical and biophysical research communications.

[106]  R. Al-Attiyah,et al.  Efficient Testing of Large Pools of Mycobacterium tuberculosis RD1 Peptides and Identification of Major Antigens and Immunodominant Peptides Recognized by Human Th1 Cells , 2008, Clinical and Vaccine Immunology.

[107]  Ching Li,et al.  Recent developments in the immunobiology of rheumatoid arthritis , 2008, Arthritis research & therapy.

[108]  L. Czirják,et al.  Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis , 2007, Annals of the rheumatic diseases.

[109]  R. Pope,et al.  Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. , 2007, Arthritis and rheumatism.

[110]  Georg Schett,et al.  Cytokines in the pathogenesis of rheumatoid arthritis , 2007, Nature Reviews Immunology.

[111]  S. Bae,et al.  Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. , 2007, Arthritis and rheumatism.

[112]  D. Brand,et al.  Collagen-induced arthritis , 2007, Nature Protocols.

[113]  S. le Cessie,et al.  The HLA-DRB1 shared epitope alleles differ in the interaction with smoking and predisposition to antibodies to cyclic citrullinated peptide. , 2007, Arthritis and rheumatism.

[114]  L. Shapira,et al.  Cutting Edge: TLR2 Is Required for the Innate Response to Porphyromonas gingivalis: Activation Leads to Bacterial Persistence and TLR2 Deficiency Attenuates Induced Alveolar Bone Resorption1 , 2006, The Journal of Immunology.

[115]  K. Shimane,et al.  CD64 on neutrophils is a sensitive and specific marker for detection of infection in patients with rheumatoid arthritis. , 2006, The Journal of rheumatology.

[116]  M. Gazouli,et al.  Relationship between Crohn's disease, infection with Mycobacterium avium subspecies paratuberculosis and SLC11A1 gene polymorphisms in Sardinian patients. , 2006, World journal of gastroenterology.

[117]  T. Benedek The history of bacteriologic concepts of rheumatic fever and rheumatoid arthritis. , 2006, Seminars in arthritis and rheumatism.

[118]  Mahavir Singh,et al.  Mycobacterium tuberculosis Complex and Mycobacterial Heat Shock Proteins in Lymph Node Tissue from Patients with Pulmonary Sarcoidosis , 2006, Journal of Clinical Microbiology.

[119]  Gang Chen,et al.  Cutting Edge: Epstein-Barr Virus Transactivates the HERV-K18 Superantigen by Docking to the Human Complement Receptor 2 (CD21) on Primary B Cells1 , 2006, The Journal of Immunology.

[120]  Edgar M. Carvalho,et al.  Valor diagnóstico do anticorpo antipeptídeo citrulinado cíclico na artrite reumatóide , 2006 .

[121]  Naomi Schlesinger,et al.  Mycobacterium marinum arthritis mimicking rheumatoid arthritis. , 2006, The Journal of rheumatology.

[122]  Mahavir Singh,et al.  Comparative Analysis of Mycobacterial Heat Shock Proteins-Induced Apoptosis of Peripheral Blood Mononuclear Cells in Sarcoidosis and Tuberculosis , 2006, Journal of Clinical Immunology.

[123]  A. Ebringer,et al.  Rheumatoid Arthritis is an Autoimmune Disease Triggered by Proteus Urinary Tract Infection , 2006, Clinical & developmental immunology.

[124]  R. Fujinami,et al.  Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease , 2006, Clinical Microbiology Reviews.

[125]  S. Akira,et al.  Muramyl Dipeptide Enhances Osteoclast Formation Induced by Lipopolysaccharide, IL-1α, and TNF-α through Nucleotide-Binding Oligomerization Domain 2-Mediated Signaling in Osteoblasts1 , 2005, The Journal of Immunology.

[126]  L. Jacobsson,et al.  Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. , 2005, Arthritis and rheumatism.

[127]  M. Ogrendik,et al.  Serum antibodies to oral anaerobic bacteria in patients with rheumatoid arthritis. , 2005, MedGenMed : Medscape general medicine.

[128]  B. Prakken,et al.  Heat-shock proteins induce T-cell regulation of chronic inflammation , 2005, Nature Reviews Immunology.

[129]  G. Pawelec,et al.  Expansion of peripheral CD8+ CD28- T cells in response to Epstein-Barr virus in patients with rheumatoid arthritis. , 2005, The Journal of rheumatology.

[130]  G. Weissmann,et al.  Hypothesis: The Humoral Immune Response to Oral Bacteria Provides a Stimulus for the Development of Rheumatoid Arthritis , 2004, Inflammation.

[131]  K. Zang,et al.  Latent Epstein–Barr virus (EBV) infection and cytomegalovirus (CMV) infection in synovial tissue of autoimmune chronic arthritis determined by RNA- and DNA-in situ hybridization , 2004, Modern Pathology.

[132]  T. Shimosegawa,et al.  Promoter polymorphism of SLC11A1 (formerly NRAMP1) confers susceptibility to autoimmune type 1 diabetes mellitus in Japanese. , 2004, Tissue antigens.

[133]  C. Lang,et al.  Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[134]  John I. Clark,et al.  Functional similarities between the small heat shock proteins Mycobacterium tuberculosis HSP 16.3 and human alphaB-crystallin. , 2002, European journal of biochemistry.

[135]  P. Seu,et al.  The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. , 2002, Microbes and infection.

[136]  A. Billiau,et al.  Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases , 2001, Journal of leukocyte biology.

[137]  N. Bizzaro,et al.  Diagnostic accuracy of the anti-citrulline antibody assay for rheumatoid arthritis. , 2001, Clinical chemistry.

[138]  S. Akira,et al.  Synergistic Effect of Muramyldipeptide with Lipopolysaccharide or Lipoteichoic Acid To Induce Inflammatory Cytokines in Human Monocytic Cells in Culture , 2001, Infection and Immunity.

[139]  P. Emery,et al.  Detection of Mycobacterium tuberculosis Group Organisms in Human and Mouse Joint Tissue by Reverse Transcriptase PCR: Prevalence in Diseased Synovial Tissue Suggests Lack of Specific Association with Rheumatoid Arthritis , 2001, Infection and Immunity.

[140]  A. Ebringer,et al.  Molecular mimicry between HLA-DR alleles associated with rheumatoid arthritis and Proteus mirabilis as the Aetiological basis for autoimmunity. , 2000, Microbes and infection.

[141]  K. Takada,et al.  Lytic Epstein-Barr virus infection in the synovial tissue of patients with rheumatoid arthritis. , 2000, Arthritis and rheumatism.

[142]  F. Breedveld,et al.  Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. , 2000, Arthritis and rheumatism.

[143]  S. J. Kim,et al.  NRAMP1 gene polymorphisms in patients with rheumatoid arthritis in Koreans. , 2000, Journal of Korean medical science.

[144]  K. Knudtson,et al.  Anti-MAM antibodies in rheumatic disease: evidence for a MAM-like superantigen in rheumatoid arthritis? , 2000, The Journal of rheumatology.

[145]  R. Inman,et al.  Molecular mimicry and autoimmunity. , 1999, The New England journal of medicine.

[146]  F. Breedveld,et al.  Detection of mycobacteria in joint samples from patients with arthritis using a genus-specific polymerase chain reaction and sequence analysis. , 1999, Rheumatology.

[147]  R. Abuknesha,et al.  Cross-Reactivity between the Rheumatoid Arthritis-Associated Motif EQKRAA and Structurally Related Sequences Found inProteus mirabilis , 1999, Infection and Immunity.

[148]  G. Kingsley,et al.  The detection of DNA from a range of bacterial species in the joints of patients with a variety of arthritides using a nested, broad-range polymerase chain reaction. , 1999, Rheumatology.

[149]  S. Kaufmann,et al.  Role of Heat Shock Proteins in Protection from and Pathogenesis of Infectious Diseases , 1999, Clinical Microbiology Reviews.

[150]  S. Grinstein,et al.  Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification , 1998, The Journal of experimental medicine.

[151]  W. Grassi,et al.  The clinical features of rheumatoid arthritis. , 1998, European journal of radiology.

[152]  K. Wise,et al.  Mycoplasma infection and rheumatoid arthritis: analysis of their relationship using immunoblotting and an ultrasensitive polymerase chain reaction detection method. , 1997, Arthritis and rheumatism.

[153]  D. Moss,et al.  Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. , 1997, Annual review of immunology.

[154]  P. Geusens,et al.  Clonal expansion of mycobacterial heat-shock protein-reactive T lymphocytes in the synovial fluid and blood of rheumatoid arthritis patients. , 1997, Arthritis and rheumatism.

[155]  B. Bannwarth,et al.  Systematic detection of mycoplasmas by culture and polymerase chain reaction (PCR) procedures in 209 synovial fluid samples. , 1997, British journal of rheumatology.

[156]  M. Bonneville,et al.  T cell response to Epstein-Barr virus transactivators in chronic rheumatoid arthritis , 1996, The Journal of experimental medicine.

[157]  C. Pozzilli,et al.  The immune response to Mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis , 1996, Journal of Neuroimmunology.

[158]  K. Tajima,et al.  High prevalence of arthropathy in HTLV-I carriers on a Japanese island. , 1996, Annals of the rheumatic diseases.

[159]  P. Simmonds,et al.  High frequency of parvovirus B19 in patients tested for rheumatoid factor , 1995, BMJ.

[160]  K. Jeng,et al.  Mycobacterium tuberculosis antigen, interleukin 2 and interleukin 2 inhibitor in patients with rheumatoid arthritis. , 1995, Immunological investigations.

[161]  W. Ollier,et al.  Positive selection in autoimmunity: Abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis , 1995, Nature Medicine.

[162]  J. Strominger,et al.  Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein , 1995, Cell.

[163]  M. Fielder,et al.  Shared amino acid sequences between major histocompatibility complex class II glycoproteins, type XI collagen and Proteus mirabilis in rheumatoid arthritis. , 1995, Annals of the rheumatic diseases.

[164]  R. Kasukawa,et al.  Proliferative response of synovial fluid mononuclear cells of patients with rheumatoid arthritis to mycobacterial 65 kDa heat shock protein and its association with HLA-DR+.gamma delta+ T cells. , 1994, The Journal of rheumatology.

[165]  L. Kotilinek,et al.  Spinal fluid lymphocytes from a subgroup of multiple sclerosis patients respond to mycobacterial antigens , 1993, Annals of neurology.

[166]  I. Cohen,et al.  T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. , 1992, The Journal of clinical investigation.

[167]  R. Williams,et al.  Molecular mimicry--hypothesis or reality? , 1992, The Western journal of medicine.

[168]  J. V. van Embden,et al.  Mycobacteria and human autoimmune disease: direct evidence of cross-reactivity between human lactoferrin and the 65-kilodalton protein of tubercle and leprosy bacilli , 1991, Infection and immunity.

[169]  C. Sunkel,et al.  Cross-reactivity and sequence homology between the 65-kilodalton mycobacterial heat shock protein and human lactoferrin, transferrin, and DR beta subsets of major histocompatibility complex class II molecules , 1990, Infection and immunity.

[170]  D. Isenberg,et al.  Elevated IgG Antibody Levels to the Mycobacterial 65‐kDa Heat Shock Protein Are Characteristic of Patients with Rheumatoid Arthritis , 1989, Scandinavian Journal of Immunology.

[171]  P. Bacon,et al.  In vitro responses to a 65-kilodalton mycobacterial protein by synovial T cells from inflammatory arthritis patients. , 1989, Journal of immunology.

[172]  J. Coligan,et al.  Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid , 1989, Nature.

[173]  G. Rook,et al.  Antibody levels to mycobacteria in relation to HLA type: evidence for non-HLA-linked high levels of antibody to the 65 kD heat shock protein of M. bovis in rheumatoid arthritis. , 1988, Clinical and experimental immunology.

[174]  G. Rook,et al.  Rheumatoid Arthritis, Mycobacterial Antigens and Agalactosyl IgG , 1988, Scandinavian journal of immunology.

[175]  F. Breedveld,et al.  SYNOVIAL FLUID T CELL REACTIVITY AGAINST 65 kD HEAT SHOCK PROTEIN OF MYCOBACTERIA IN EARLY CHRONIC ARTHRITIS , 1988, The Lancet.

[176]  I. Cohen,et al.  Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis , 1988, Nature.

[177]  P. Gregersen,et al.  The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. , 1987, Arthritis and rheumatism.

[178]  M. Oldstone Molecular mimicry and autoimmune disease , 1987, Cell.

[179]  S. Atkin,et al.  Clinical and laboratory studies of inflammatory polyarthritis in patients with leprosy in Papua New Guinea. , 1987, Annals of the rheumatic diseases.

[180]  M. Schulzer,et al.  Persistent synovial lymphocyte responses to cytomegalovirus antigen in some patients with rheumatoid arthritis. , 1987, Arthritis and rheumatism.

[181]  I. Cohen,et al.  Arthritis induced by a T-lymphocyte clone that responds to Mycobacterium tuberculosis and to cartilage proteoglycans. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[182]  E. Keystone,et al.  Polyarthritis due to Mycobacterium kansasii in a patient with rheumatoid arthritis. , 1980, Annals of the rheumatic diseases.

[183]  N. Shinohara,et al.  A new side effect of BCG immunotherapy — BCG-induced arthritis in man , 1978, Cancer Immunology, Immunotherapy.

[184]  J. Ward,et al.  Arthritis of mice induced by Mycoplasma arthritidis. Humoral antibody and lymphocyte responses of CBA mice. , 1976, Annals of the rheumatic diseases.

[185]  H. M. Hill,et al.  MILIARY TUBERCULOSIS DEVELOPING DURING PROLONGED CORTISONE THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS , 1956 .

[186]  P. Miossec,et al.  Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. , 2019, Current opinion in rheumatology.

[187]  金川 裕矢 Mycobacterium tuberculosis promotes arthritis development through Toll-like receptor 2 , 2014 .

[188]  R. Root-Bernstein,et al.  Complexities in the Relationship Between Infection and Autoimmunity , 2013, Current Allergy and Asthma Reports.

[189]  J. Listing,et al.  The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. , 2013, Rheumatology.

[190]  J. Slate,et al.  Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata). , 2011, Immunogenetics.

[191]  J. O'dell,et al.  Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. , 2009, International immunopharmacology.

[192]  L. Alfredsson,et al.  A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. , 2006, Arthritis and rheumatism.

[193]  G. Pawelec,et al.  Expansion of Peripheral CD 8 + CD 28 – T Cells in Response to Epstein-Barr Virus in Patients with Rheumatoid Arthritis , 2005 .

[194]  I. Cohen,et al.  The mycobacterial 65 kD heat-shock protein and autoimmune arthritis , 2004, Rheumatology International.

[195]  H. Einsele,et al.  Persistence of B19 parvovirus in synovial membranes of patients with rheumatoid arthritis , 2004, Rheumatology International.

[196]  M. Kotze,et al.  Analysis of the NRAMP1 gene implicated in iron transport: association with multiple sclerosis and age effects. , 2001, Blood cells, molecules & diseases.

[197]  R. Abuknesha,et al.  Cross-reactivity between the rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis. , 1999, Infection and immunity.

[198]  D. Isenberg,et al.  Mycobacteria and autoimmunity. , 1988, Immunology today.

[199]  C. Werning [Rheumatoid arthritis]. , 1983, Medizinische Monatsschrift fur Pharmazeuten.

[200]  H. M. Hill,et al.  Military tuberculosis developing during prolonged cortisone therapy of systemic lupus erythematosus. , 1956, Annals of internal medicine.