Evaluation of sampling methods for fracture network characterization using outcrops

Outcrops provide valuable information for the characterization of fracture networks. Sampling methods such as scanline sampling, window sampling, and circular scanline and window methods are available to measure fracture network characteristics in outcrops and from well cores. These methods vary in their application, the parameters they provide and, therefore, have advantages and limitations. We provide a critical review on the application of these sampling methods and apply them to evaluate two typical natural examples: (1) a large-scale satellite image from the Oman Mountains, Oman (120,000 m2 [1,291,669 ft2]), and (2) a small-scale outcrop at Craghouse Park, United Kingdom (19 m2 [205 ft2]). The differences in the results emphasize the importance to (1) systematically investigate the required minimum number of measurements for each sampling method and (2) quantify the influence of censored fractures on the estimation of fracture network parameters. Hence, a program was developed to analyze 1300 sampling areas from 9 artificial fracture networks with power-law length distributions. For the given settings, the lowest minimum number of measurements to adequately capture the statistical properties of fracture networks was found to be approximately 110 for the window sampling method, followed by the scanline sampling method with approximately 225. These numbers may serve as a guideline for the analyses of fracture populations with similar distributions. Furthermore, the window sampling method proved to be the method that is least sensitive to censoring bias. Reevaluating our natural examples with the window sampling method showed that the existing percentage of censored fractures significantly influences the accuracy of inferred fracture network parameters.

[1]  M. R. Gross,et al.  Mechanical and fracture stratigraphy , 2009 .

[2]  S. Priest Discontinuity Analysis for Rock Engineering , 1992 .

[3]  C. Renshaw,et al.  Measuring fracture apertures: A comparison of methods , 2000 .

[4]  M. Mauldon,et al.  Estimating fracture trace intensity, density, and mean length using circular scan lines and windows , 2002 .

[5]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[6]  Improved statistical multi-scale analysis of fractured reservoir analogues , 2011 .

[7]  Alfred Lacazette,et al.  A new stereographic technique for the reduction of scanline survey data of geologic fractures , 1991 .

[8]  Larry D. McKay,et al.  Fractal characterization of fracture networks: An improved box-counting technique , 2007 .

[9]  J. Muller,et al.  Selection of the landing site in Isidis Planitia of Mars probe Beagle 2 , 2003 .

[10]  J. Diebolt,et al.  Describing the Geometry of 3D Fracture Systems by Correcting for Linear Sampling Bias , 2004 .

[11]  William Dershowitz,et al.  Rock joint systems , 1984 .

[12]  S. Priest,et al.  ESTIMATION OF DISCONTINUITY SPACING AND TRACE LENGTH USING SCANLINE SURVEYS , 1981 .

[13]  Ove Stephansson,et al.  The Basics of Fracture System Characterization - Field Mapping and Stochastic Simulations , 2007 .

[14]  Stephen E. Laubach,et al.  Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico , 2006 .

[15]  János Urai,et al.  Evolution of fractures in a highly dynamic thermal, hydraulic, and mechanical system – (I) Field observations in Mesozoic Carbonates, Jabal Shams, Oman Mountains , 2009, GeoArabia.

[16]  I. W. Farmer,et al.  Fluid Flow in Discontinuous Rocks , 1993 .

[17]  S. D. Priest,et al.  Determination of Discontinuity Size Distributions from Scanline Data , 2004 .

[18]  M. Giorgioni,et al.  Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks , 2010 .

[19]  Michael S. Riley,et al.  Fracture trace length and number distributions from fracture mapping , 2005 .

[20]  E. Gomez‐Rivas,et al.  A review of the formation of tectonic veins and their microstructures , 2012 .

[21]  Tom Manzocchi,et al.  Population scaling biases in map samples of power-law fault systems , 2009 .

[22]  Philippe Davy,et al.  On the Frequency-Length Distribution of the San Andreas Fault System , 1993 .

[23]  E. W. Llewellin,et al.  LBflow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part I: theory and implementation , 2010, Comput. Geosci..

[24]  Federico Olóriz,et al.  First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis , 2002 .

[25]  E. W. Llewellin,et al.  LBflow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part II: usage and validation , 2010, Comput. Geosci..

[26]  G. J. Lyman,et al.  Rock fracture mean trace length estimation and confidence interval calculation using maximum likelihood methods , 2003 .

[27]  J. Olson,et al.  Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis , 2009 .

[28]  D. Pollard,et al.  An experimental study of the relationship between joint spacing and layer thickness , 1995 .

[29]  Olivier Bour,et al.  Stereological analysis of fractal fracture networks , 2003 .

[30]  János Urai,et al.  Fracture sealing and fluid overpressures in limestones of the Jabal Akhdar dome, Oman mountains , 2006 .

[31]  Stephen E. Laubach,et al.  A scale-independent approach to fracture intensity and average spacing measurement , 2006 .

[32]  Y. Géraud,et al.  Scaling and geometric properties of extensional fracture systems in the proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications , 2011 .

[33]  K. Koike,et al.  Lineament analysis of satellite images using a segment tracing algorithm (STA) , 1995 .

[34]  K. Loague,et al.  Statistical and graphical methods for evaluating solute transport models: Overview and application , 1991 .

[35]  Jon E. Olson,et al.  Sublinear scaling of fracture aperture versus length: An exception or the rule? , 2003 .

[36]  P. R. La Pointe,et al.  Derivation of parent fracture population statistics from trace length measurements of fractal fracture populations , 2002 .

[37]  Herbert H. Einstein,et al.  Characterizing rock joint geometry with joint system models , 1988 .

[38]  Philip G. Meredith,et al.  A COMPARISON OF SEISMIC AND STRUCTURAL MEASUREMENTS OF SCALING EXPONENTS DURING TENSILE SUBCRITICAL CRACK-GROWTH , 1993 .

[39]  Tivadar M. Tóth,et al.  Relationship Between the Geometric Parameters of Rock Fractures, the Size of Percolation Clusters and REV , 2011 .

[40]  Andrew V. Wolfsberg,et al.  Rock Fractures and Fluid Flow: Contemporary Understanding and Applications , 1997 .

[41]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[42]  R. Brauchler,et al.  Groundwater in Fractured Rocks , 2007 .

[43]  N. Barton,et al.  Joint aperture and roughness in the prediction of flow and groutability of rock masses , 1997 .

[44]  W. Narr Estimating Average Fracture Spacing in Subsurface Rock , 1996 .

[45]  Dick Kroon,et al.  Mayotte coral reveals hydrological changes in the western Indian Ocean between 1881 and 1994 , 2008 .

[46]  S. P. Neuman Multiscale relationships between fracture length, aperture, density and permeability , 2008 .

[47]  N. P. Christensen,et al.  Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs , 1999, Petroleum Geoscience.

[48]  Randolf Rausch,et al.  Fracture flow modelling based on satellite images of the Wajid Sandstone, Saudi Arabia , 2010 .

[49]  R. Marrett,et al.  Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico , 2000 .

[50]  M. Mauldon,et al.  Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces , 2001 .

[51]  J. Barthelemy,et al.  Estimates of fracture density and uncertainties from well data , 2009 .

[52]  Tivadar M. Tóth,et al.  Determination of geometric parameters of fracture networks using 1D data , 2010 .

[53]  Matthew W Becker,et al.  Potential for Satellite Remote Sensing of Ground Water , 2006, Ground water.

[54]  P. Blum,et al.  Coupled Hydro-Mechanical Modelling of Flow in Fractured Rock , 2003 .

[55]  John A. Hudson,et al.  Characterization and Interpretation of Rock Mass Joint Patterns , 1985 .

[56]  Stephen E. Laubach,et al.  Modeling Coupled Fracture-Matrix Fluid Flow in Geomechanically Simulated Fracture Networks , 2005 .

[57]  Gregory B. Baecher,et al.  Probabilistic and statistical methods in engineering geology , 1983 .

[58]  Martin J. Blunt,et al.  Comparison of deterministic with stochastic fracture models in water-flooding numerical simulations , 2009 .

[59]  J. Kalda,et al.  Melt extraction and accumulation from partially molten rocks , 2004 .

[60]  Olivier Bour,et al.  A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway) , 2002 .

[61]  Pinnaduwa Kulatilake,et al.  The density of discontinuity traces in sampling windows , 1984 .

[62]  Philipp Blum,et al.  Stochastic simulations of regional scale advective transport in fractured rock masses using block upscaled hydro-mechanical rock property data , 2009 .

[63]  John A. Hudson,et al.  Discontinuity frequency in rock masses , 1983 .

[64]  P. J. Pahl,et al.  Estimating the mean length of discontinuity traces , 1981 .

[65]  M. Mauldon,et al.  Estimating Mean Fracture Trace Length and Density from Observations in Convex Windows , 1998 .

[66]  Menachem P. Weiss,et al.  Techniques for estimating fracture size: A comparison of methods , 2008 .

[67]  A. Hoch,et al.  Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium , 2000 .

[68]  C. Scholz A note on the scaling relations for opening mode fractures in rock , 2010 .

[69]  S. Laubach Practical approaches to identifying sealed and open fractures , 2003 .

[70]  M. Holland,et al.  Evolution of fractures in a highly dynamic thermal, hydraulic, and mechanical system - (II) Remote sensing fracture analysis, Jabal Shams, Oman Mountains , 2009, GeoArabia.

[71]  Lianyang Zhang,et al.  Estimating the intensity of rock discontinuities , 2000 .

[72]  Lianyang Zhang,et al.  Estimating the Mean Trace Length of Rock Discontinuities , 1998 .

[73]  Jon E. Olson,et al.  Comment on “A note on the scaling relations for opening mode fractures in rock” by C.H. Scholz , 2011 .

[74]  J. E. Sylte,et al.  Ekofisk Field: fracture permeability evaluation and implementation in the flow model , 2005, Petroleum Geoscience.

[75]  Rae Mackay,et al.  Performance assessment of a nuclear waste repository : Upscaling coupled hydro-mechanical properties for far-field transport analysis , 2005 .

[76]  Hugh Coe,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis , 2003 .

[77]  Noelle E. Odling,et al.  Scaling and connectivity of joint systems in sandstones from western Norway , 1997 .

[78]  S. P. Neuman,et al.  Trends, prospects and challenges in quantifying flow and transport through fractured rocks , 2005 .

[79]  D. Sanderson,et al.  Sampling power-law distributions , 1995 .

[80]  P. Witherspoon,et al.  Porous media equivalents for networks of discontinuous fractures , 1982 .

[81]  R. D. Terzaghi Sources of Error in Joint Surveys , 1965 .

[82]  D. M. Cruden Describing the size of discontinuities , 1977 .

[83]  J. Chilès,et al.  Taking into account the complexity of natural fracture systems in reservoir single-phase flow modelling , 2002 .

[84]  Alex K. Manda,et al.  Comparison of three fracture sampling methods for layered rocks , 2010 .