The Stanford Typed Dependencies Representation

This paper examines the Stanford typed dependencies representation, which was designed to provide a straightforward description of grammatical relations for any user who could benefit from automatic text understanding. For such purposes, we argue that dependency schemes must follow a simple design and provide semantically contentful information, as well as offer an automatic procedure to extract the relations. We consider the underlying design principles of the Stanford scheme from this perspective, and compare it to the GR and PARC representations. Finally, we address the question of the suitability of the Stanford scheme for parser evaluation.

[1]  Ben Hutchinson,et al.  Intrinsic versus Extrinsic Evaluations of Parsing Systems , 2003 .

[2]  Dekang Lin,et al.  Dependency-Based Evaluation of Minipar , 2003 .

[3]  Dragomir R. Radev,et al.  Semi-Supervised Classification for Extracting Protein Interaction Sentences using Dependency Parsing , 2007, EMNLP.

[4]  Jari Björne,et al.  BioInfer: a corpus for information extraction in the biomedical domain , 2007, BMC Bioinformatics.

[5]  Matthew Lease,et al.  Parsing Biomedical Literature , 2005, IJCNLP.

[6]  Daniel Dominic Sleator,et al.  Parsing English with a Link Grammar , 1995, IWPT.

[7]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[8]  Ophir Frieder,et al.  IIT TREC 2007 Genomics Track: Using Concept-Based Semantics in Context for Genomics Literature Passage Retrieval , 2007, TREC.

[9]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[10]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[11]  Roger Levy,et al.  Tregex and Tsurgeon: tools for querying and manipulating tree data structures , 2006, LREC.

[12]  Ralf Zimmer,et al.  RelEx - Relation extraction using dependency parse trees , 2007, Bioinform..

[13]  Amal Zouaq,et al.  Building Domain Ontologies from Text for Educational Purposes , 2007, IEEE Transactions on Learning Technologies.

[14]  Daniel Jurafsky,et al.  Learning Syntactic Patterns for Automatic Hypernym Discovery , 2004, NIPS.

[15]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[16]  Vasile Rus,et al.  Logic Form Transformation of WordNet and its Applicability to Question Answering , 2001, ACL.

[17]  Mary Dalrymple,et al.  The PARC 700 Dependency Bank , 2003, LINC@EACL.

[18]  Amal Zouaq,et al.  The Knowledge Puzzle: An Integrated Approach of Intelligent Tutoring Systems and Knowledge Management , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[19]  Yusuke Miyao,et al.  Challenges in Mapping of Syntactic Representations for Framework-Independent Parser Evaluation , 2007 .

[20]  Roger Levy,et al.  Deep Dependencies from Context-Free Statistical Parsers: Correcting the Surface Dependency Approximation , 2004, ACL.

[21]  Ted Briscoe,et al.  Corpus Annotation for Parser Evaluation , 1999, ArXiv.

[22]  Ralph Grishman,et al.  A Procedure for Quantitatively Comparing the Syntactic Coverage of English Grammars , 1991, HLT.

[23]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[24]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[25]  Mark Stevenson,et al.  Selection 1 A Semi-Supervised Approach To Learning Relevant Protein-Protein Interaction Articles , .

[26]  T. V. Prabhakar,et al.  Sentence Level Sentiment Analysis in the Presence of Conjuncts Using Linguistic Analysis , 2007, ECIR.

[27]  Tapio Salakoski,et al.  On the unification of syntactic annotations under the Stanford dependency scheme: A case study on BioInfer and GENIA , 2007, BioNLP@ACL.

[28]  Christopher R. Johnson,et al.  Background to Framenet , 2003 .

[29]  Jari Björne,et al.  A Graph Kernel for Protein-Protein Interaction Extraction , 2008, BioNLP.

[30]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[31]  J. Bresnan Lexical-Functional Syntax , 2000 .

[32]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[33]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.