Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses.

In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement.

[1]  J. Shapiro,et al.  Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics , 2014, Journal of Lightwave Technology.

[2]  Ivan B Djordjevic,et al.  Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. , 2011, Optics express.

[3]  Klaus Blaum,et al.  Radiative cooling of Al−4 and Al−5 in a cryogenic environment , 2012 .

[4]  S. Hranilovic,et al.  Outage Capacity Optimization for Free-Space Optical Links With Pointing Errors , 2007, Journal of Lightwave Technology.

[5]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[6]  B. Thid'e,et al.  Encoding many channels on the same frequency through radio vorticity: first experimental test , 2011, 1107.2348.

[7]  A. Willner,et al.  Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link , 2015 .

[8]  F. Nori,et al.  Spatiotemporal vortex beams and angular momentum , 2012, 1205.3307.

[9]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[10]  H G Winful,et al.  Higher-order transverse modes of ultrashort isodiffracting pulses. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[12]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[13]  Yan Yan,et al.  Performance enhancement of an orbital-angular-momentum-based free-space optical communication link through beam divergence controlling , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[14]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[15]  E. Ciaramella,et al.  320 Gbit/s (8×40 Gbit/s) double-pass terrestrial free-space optical link transparently connected to optical fibre lines , 2008, 2008 34th European Conference on Optical Communication.

[16]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[17]  G. S. Mecherle,et al.  Beam pointing error as a significant design parameter for satellite-borne, free-space optical communication systems , 1985 .

[18]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[19]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[20]  L C Andrews,et al.  Spot size and divergence for Laguerre Gaussian beams of any order. , 1983, Applied optics.

[21]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.