Dynamics of soliton self-injection locking in optical microresonators

[1]  M. Vallet,et al.  Microcomb Source Based on InP DFB / Si3N4 Microring Butt-Coupling , 2020, Journal of Lightwave Technology.

[2]  W. T. Chen,et al.  Frequency combs induced by phase turbulence , 2020, Nature.

[3]  T. C. Briles,et al.  Semiconductor Laser Integration for Octave-Span Kerr-Soliton Frequency Combs , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[4]  Erwan Lucas,et al.  Photonic microwave generation in the X- and K-band using integrated soliton microcombs , 2020, Nature Photonics.

[5]  A. Voloshin,et al.  Numerical modelling of WGM microresonator Kerr frequency combs in self-injection locking regime , 2020 .

[6]  Hyungwoo Choi,et al.  Emerging material systems for integrated optical Kerr frequency combs , 2020, Advances in Optics and Photonics.

[7]  N. Kondratiev,et al.  Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering , 2019, 1912.11297.

[8]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[9]  Michal Lipson,et al.  Turn-Key, High-Efficiency Kerr Comb Source , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[10]  T. Kippenberg,et al.  Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator , 2019, Nature Communications.

[11]  C. Roeloffzen,et al.  Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits , 2019, Photonics.

[12]  J. Bowers,et al.  High-power sub-kHz linewidth lasers fully integrated on silicon , 2019, Optica.

[13]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[14]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[15]  John Bowers,et al.  Vernier spectrometer using counterpropagating soliton microcombs , 2018, Science.

[16]  M. Gorodetsky,et al.  Electrically pumped photonic integrated soliton microcomb , 2018, Nature Communications.

[17]  M. Lončar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[18]  M. Karpov,et al.  Ultralow-Power Chip-Based Soliton Microcombs for Photonic Integration , 2018, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[19]  Scott A. Diddams,et al.  Searching for Exoplanets Using a Microresonator Astrocomb , 2018, Nature Photonics.

[20]  T. Kippenberg,et al.  Dynamics of soliton crystals in optical microresonators , 2017, Nature Physics.

[21]  A. Gorodnitskiy,et al.  Influence of the microresonator nonlinearity on the self-injection locking effect , 2019, EPJ Web of Conferences.

[22]  T. J. Kippenberg,et al.  From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Anatoliy A. Savchenkov,et al.  On Stiffness of Optical Self-Injection Locking , 2018, Photonics.

[24]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[25]  M. Gorodetsky,et al.  Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes , 2018, Nature Photonics.

[26]  N. Jones How to stop data centres from gobbling up the world’s electricity , 2018, Nature.

[27]  Sigang Yang,et al.  Tunable Self-Injected Fabry–Perot Laser Diode Coupled to an External High-Q Si3N4 /SiO2 Microring Resonator , 2018, Journal of Lightwave Technology.

[28]  Tobias J. Kippenberg,et al.  Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[30]  P. Andrekson,et al.  High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators , 2018, Nature Communications.

[31]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[32]  S. Diddams,et al.  Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs. , 2017, Physical review letters.

[33]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[34]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[35]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[36]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[37]  Michael L. Gorodetsky,et al.  Self-injection locking of a laser diode to a high-Q WGM microresonator , 2017 .

[38]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[39]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[40]  Y. Kartashov,et al.  Multistability and coexisting soliton combs in ring resonators: the Lugiato-Lefever approach. , 2017, Optics express.

[41]  M. Qi,et al.  Soliton repetition rate in a silicon-nitride microresonator. , 2016, Optics letters.

[42]  Xinbai Li,et al.  Single-mode dispersive waves and soliton microcomb dynamics , 2016, Nature Communications.

[43]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[44]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[45]  M. Qi,et al.  Microresonator Kerr frequency combs with high conversion efficiency , 2016, 1610.00958.

[46]  E. Knobloch,et al.  Dark solitons in the Lugiato-Lefever equation with normal dispersion , 2016, 1603.03985.

[47]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[48]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[49]  A. Matsko,et al.  Ultralow noise miniature external cavity semiconductor laser , 2015, Nature Communications.

[50]  M. Taki,et al.  Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects , 2015, 1503.00672.

[51]  Yanne K. Chembo,et al.  Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes , 2013, 1308.2542.

[52]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[53]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[54]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[55]  S. Donati Developing self‐mixing interferometry for instrumentation and measurements , 2012 .

[56]  Michal Lipson,et al.  Chip-based frequency combs with sub-100 GHz repetition rates. , 2012, Optics letters.

[57]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[58]  Klaus Petermann,et al.  External optical feedback phenomena in semiconductor lasers , 1995, Other Conferences.

[59]  A. Clairon,et al.  Frequency noise analysis of optically self-locked diode lasers , 1989 .

[60]  C. Henry,et al.  The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator , 1987 .

[61]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[62]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[63]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[64]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .