Uniform asymptotics for S- and MM-regression estimators

In this paper we find verifiable regularity conditions to ensure that S-estimators of scale and regression and MM-estimators of regression are uniformly consistent and uniformly asymptotically normally distributed over contamination neighbourhoods. Moreover, we show how to calculate the size of these neighbourhoods. In particular, we find that, for MM-estimators computed with Tukey’s family of bisquare score functions, there is a trade-off between the size of these neighbourhoods and both the breakdown point of the S-estimators and the leverage of the contamination that is allowed in the neighbourhood. These results extend previous work of Salibian-Barrera and Zamar for location-scale to the linear regression model.

[1]  V. Yohai,et al.  A Fast Algorithm for S-Regression Estimates , 2006 .

[2]  B. R. Clarke Nonsmooth analysis and Fréchet differentiability of M-functionals , 1986 .

[3]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[4]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[5]  Matias Salibian-Barrera,et al.  The Asymptotics of MM-Estimators for Linear Regression with Fixed Designs , 2006 .

[6]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[7]  P. L. Davies,et al.  On locally uniformly linearizable high breakdown location and scale functionals , 1998 .

[8]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[9]  P. Rousseeuw,et al.  Generalized S-Estimators , 1994 .

[10]  P. L. Davies Aspects of Robust Linear Regression , 1993 .

[11]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[12]  B. R. Clarke A remark on robustness and weak continuity of M-estimators , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[13]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[14]  V. Yohai,et al.  Asymptotic behavior of general M-estimates for regression and scale with random carriers , 1981 .

[15]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[16]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[17]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[18]  Victor J. Yohai,et al.  Functional stability of one-step GM-estimators in approximately linear regression , 1998 .

[19]  R. Zamar,et al.  A note on the uniform asymptotic normality of location M-estimates , 2006 .

[20]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[21]  M. Salibian-Barrera,et al.  Contributions to the theory of robust inference , 2000 .

[22]  Christophe Croux,et al.  Robust standard errors for robust estimators , 2003 .

[23]  Ruben H. Zamar,et al.  Uniform asymptotics for robust location estimates when the scale is unknown , 2004, math/0410079.

[24]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[25]  R. Martin,et al.  Bias Robust Estimation of Scale , 1993 .

[26]  David M. Rocke,et al.  Estimating the variances of robust estimators of location: influence curve, jackknife and bootstrap , 1981 .

[27]  M. Silvapulle,et al.  Minimum mean squared estimation of location and scale parameters under misspecification of the model , 1981 .

[28]  Raymond J. Carroll,et al.  ON ALMOST SURE EXPANSIONS FOR M-ESTIMATES , 1978 .

[29]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[30]  Ruben H. Zamar,et al.  The Fast-τ Estimator for Regression , 2008 .

[31]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[32]  T. Hettmansperger,et al.  Robust Bounded Influence Tests in Linear Models , 1990 .

[33]  Raymond J. Carroll,et al.  On Estimating Variances of Robust Estimators When the Errors are Asymmetric , 1979 .

[34]  R. Zamar,et al.  Global robustness of location and dispersion estimates , 1999 .

[35]  P. L. Davies,et al.  The asymptotics of S-estimators in the linear regression model , 1990 .