On generating the ring of matrix semi-invariants

For a field $\mathbb{F}$, let $R(n, m)$ be the ring of invariant polynomials for the action of $\mathrm{SL}(n, \mathbb{F}) \times \mathrm{SL}(n, \mathbb{F})$ on tuples of matrices -- $(A, C)\in\mathrm{SL}(n, \mathbb{F}) \times \mathrm{SL}(n, \mathbb{F})$ sends $(B_1, \dots, B_m)\in M(n, \mathbb{F})^{\oplus m}$ to $(AB_1C^{-1}, \dots, AB_mC^{-1})$. In this paper we call $R(n, m)$ the \emph{ring of matrix semi-invariants}. Let $\beta(R(n, m))$ be the smallest $D$ s.t. matrix semi-invariants of degree $\leq D$ generate $R(n, m)$. Guided by the Procesi-Razmyslov-Formanek approach of proving a strong degree bound for generating matrix invariants, we exhibit several interesting structural results for the ring of matrix semi-invariants $R(n, m)$ over fields of characteristic $0$. Using these results, we prove that $\beta(R(n, m))=\Omega(n^{3/2})$, and $\beta(R(2, m))\leq 4$.

[1]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[2]  Mátyás Domokos,et al.  Rings of matrix invariants in positive characteristic , 2002 .

[3]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[4]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[5]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .

[6]  Stephen Donkin,et al.  Invariants of several matrices , 1992 .

[7]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[8]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[9]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[10]  H. Weyl The Classical Groups , 1940 .

[11]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[12]  Gábor Ivanyos,et al.  Finding the radical of an algebra of linear transformations , 1997 .

[13]  E. Formanek,et al.  Generating the ring of matrix invariants , 1986 .

[14]  Avi Wigderson,et al.  Non-commutative arithmetic circuits with division , 2014, Theory Comput..

[15]  Jan Draisma,et al.  The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms , 2006 .

[16]  M. Domokos,et al.  Defining relation for semi-invariants of three by three matrix triples , 2011, 1101.3178.

[17]  Ju P Razmyslov TRACE IDENTITIES OF FULL MATRIX ALGEBRAS OVER A FIELD OF CHARACTERISTIC ZERO , 1974 .

[18]  Mátyás Domokos,et al.  Poincaré series of semi-invariants of 2×2 matrices , 2000 .

[19]  Mátyá Domokos Relative invariants of 3 × 3 matrix triples , 2000 .

[20]  Stephen Donkin Invariant functions on matrices , 1993 .

[21]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[22]  Matrix invariants and the failure of Weyl's Theorem , 2003 .