Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz

We show that chalcogenide glass As38Se62 capillaries can act as efficient waveguides in the whole mid-infrared–terahertz (THz) spectral range. The capillaries are fabricated using a double crucible drawing technique. This technique allows to produce glass capillaries with wall thicknesses in the range of 12 to 130 μm. Such capillaries show low-loss guidance in the whole mid-IR–THz spectral range. We demonstrate experimentally that low-loss guidance with thin capillaries involves various guidance mechanisms, including Fresnel reflections at the capillary inner walls, resonant guidance (ARROW type) due to light interference in the thin capillary walls, as well as total internal reflection guidance where very thin capillary walls act as a subwavelength waveguide, which is especially easy to observe in the THz spectral range.

[1]  Peter Uhd Jepsen,et al.  Ultrabroadband terahertz spectroscopy of chalcogenide glasses , 2012 .

[2]  Bora Ung,et al.  Polymer microstructured optical fibers for terahertz wave guiding. , 2011, Optics express.

[3]  E. Dianov,et al.  Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core. , 2011, Optics express.

[4]  M. Schmidt,et al.  Supercontinuum generation in chalcogenide-silica step-index fibers. , 2011, Optics express.

[5]  E. M. Dianov,et al.  Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics , 2011 .

[6]  G. Humbert,et al.  Broadband terahertz transmission within the air channel of thin-wall pipe. , 2011, Optics letters.

[7]  Bora Ung,et al.  Transmission measurements of hollow-core THz Bragg fibers , 2011 .

[8]  M. Skorobogatiy,et al.  Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. , 2011, Optics express.

[9]  M. Skorobogatiy,et al.  Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique. , 2010, Optics express.

[10]  Bora Ung,et al.  Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. , 2010, Optics express.

[11]  Daru Chen,et al.  A novel low-loss Terahertz waveguide: polymer tube. , 2010, Optics express.

[12]  Jin-Long Peng,et al.  Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. , 2010, Optics express.

[13]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[14]  Chi-Kuang Sun,et al.  Low-index terahertz pipe waveguides. , 2009, Optics letters.

[15]  Jean-Luc Adam,et al.  Chalcogenide Glass Fibers for Infrared Sensing and Space Optics , 2009 .

[16]  Oleg Mitrofanov,et al.  Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. , 2007, Optics letters.

[17]  Mitsunobu Miyagi,et al.  Flexible terahertz fiber optics with low bend-induced losses , 2007 .

[18]  Michael Nagel,et al.  Low-index discontinuity terahertz waveguides. , 2006, Optics express.

[19]  Yun-Sik Jin,et al.  Terahertz Dielectric Properties of Polymers , 2006 .

[20]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[21]  R. E. Miles,et al.  Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared , 2005 .

[22]  Ja-Yu Lu,et al.  Low-loss subwavelength plastic fiber for terahertz waveguiding. , 2005, Optics letters.

[23]  E. B. Kryukova,et al.  Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass , 2005 .

[24]  Roshan George,et al.  Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. , 2004, Optics express.

[25]  Jean-Luc Adam,et al.  Infrared fibers based on Te–As–Se glass system with low optical losses , 2004 .

[26]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[27]  Mitsunobu Miyagi,et al.  Hollow infrared fibers fabricated by glass-drawing technique. , 2002, Optics express.

[28]  Ishwar D. Aggarwal,et al.  Fabrication of single-mode chalcogenide optical fiber , 1998 .

[29]  M. Churbanov,et al.  High-purity chalcogenide glasses as materials for fiber optics , 1995 .

[30]  G. Sigel,et al.  Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. , 1991, Applied optics.

[31]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[32]  Terutoshi Kanamori,et al.  Chalcogenide glass fibers for mid-infrared transmission , 1984 .

[33]  S. Nishida,et al.  Transmission Characteristics of Dielectric Tube Leaky Waveguide , 1980 .