On the Lack of Uniform Observability for Discontinuous Galerkin Approximations of Waves

The purpose of this chapter is to construct initial data for the discontinuous Galerkin approximations of the wave equation so that the corresponding wave packets propagate arbitrarily slowly. Our construction is based on the fact that on each Fourier mode there are critical wave numbers at which the corresponding group velocity vanishes. Moreover, we prove that the observability constant blows up at least polynomially at any order as the mesh size h tends to zero.

[1]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[2]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[3]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[4]  Sylvain Ervedoza,et al.  Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes , 2010 .

[5]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[6]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[7]  Louis Roder Tcheugoué Tébou,et al.  Uniform boundary stabilization of the finite difference space discretization of the 1−d wave equation , 2007, Adv. Comput. Math..

[8]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[9]  Sorin Micu,et al.  Uniform boundary controllability of a semi-discrete 1-D wave equation , 2002, Numerische Mathematik.

[10]  E. Zuazua Exponential decay for the semilinear wave equation with localized damping , 1990 .

[11]  Frédéric Poupaud,et al.  The pseudo-differential approach¶to finite differences revisited , 1999 .

[12]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[13]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[14]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[15]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[16]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[17]  Enrique Zuazua,et al.  Controllability and Observability of Partial Differential Equations: Some Results and Open Problems , 2007 .

[18]  R. Glowinski,et al.  A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .

[19]  Enrique Zuazua,et al.  Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation , 2009, SIAM J. Numer. Anal..

[20]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[21]  H. E. Rose Linear Algebra: A Pure Mathematical Approach , 2002 .

[22]  Fabricio Maciá Lang Propagación y control de vibraciones en medios discretos y continuos , 2002 .

[23]  E. Zuazua,et al.  Convergence of a two-grid algorithm for the control of the wave equation , 2009 .

[24]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: Index of subjects , 2008 .

[25]  Sorin Micu Uniform Boundary Controllability of a Semidiscrete 1-D Wave Equation with Vanishing Viscosity , 2008, SIAM J. Control. Optim..

[26]  Enrique Zuazua,et al.  Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .

[27]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[28]  Spencer J. Sherwin,et al.  Dispersion Analysis of the Continuous and Discontinuous Galerkin Formulations , 2000 .

[29]  Fabricio Macià,et al.  Wigner Measures in the Discrete Setting: High-Frequency Analysis of Sampling and Reconstruction Operators , 2003, SIAM J. Math. Anal..

[30]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[31]  Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1−d wave equation , 2010, 1008.0199.

[32]  Leszek Demkowicz,et al.  Wavenumber Explicit Analysis of a DPG Method for the Multidimensional Helmholtz Equation , 2011 .

[33]  E. Zuazua Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .

[34]  Enrique Zuazua,et al.  On the Quadratic Finite Element Approximation of One-Dimensional Waves: Propagation, Observation, and Control , 2012, SIAM J. Numer. Anal..

[35]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[36]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[37]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[38]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[39]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[40]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[41]  Enrique Zuazua,et al.  A SYSTEMATIC METHOD FOR BUILDING SMOOTH CONTROLS FOR SMOOTH DATA , 2010 .

[42]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[43]  Julien Diaz,et al.  Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation , 2010 .

[44]  W. Greub Linear Algebra , 1981 .

[45]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[46]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[47]  Jan Drewes Achenbach,et al.  Modern Problems in Elastic Wave Propagation , 1979 .

[48]  Enrique Zuazua,et al.  The Wave Equation: Control and Numerics , 2012 .

[49]  M. Mehrenberger,et al.  An Ingham type proof for a two-grid observability theorem , 2008 .

[50]  Localized solutions for the finite difference semi-discretization of the wave equation , 2010, 1008.0197.

[51]  E. Zuazua,et al.  On the observability of time-discrete conservative linear systems , 2008 .

[52]  Neil Sclater,et al.  Mechanisms and Mechanical Devices Sourcebook , 1991 .

[53]  Enrique Zuazua,et al.  Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach , 2015, Found. Comput. Math..

[54]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[55]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[56]  R. E. Kalman,et al.  On the general theory of control systems , 1959 .

[57]  Carlos Castro,et al.  Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method , 2006, Numerische Mathematik.

[58]  R. Glowinski Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation , 1992 .

[59]  On the Quadratic Finite Element Approximation of 1D Waves: Propagation, Observation, Control, and Numerical Implementation , 2013 .

[60]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[61]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[62]  E. Zuazua,et al.  Convergence of a multigrid method for the controllability of a 1-d wave equation , 2004 .

[63]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[64]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach , 2008 .

[65]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .