A Proof-Theoretic Proof of Functional Completeness for Many Modal and Tense Logics
暂无分享,去创建一个
[1] Heinrich Wansing. Tarskian Structured Consequence Relations and Functional Completeness , 1995 .
[2] John P. Burgess,et al. Basic Tense Logic , 1984 .
[3] M. de Rijke. Advances in intensional logic , 1997 .
[4] D. Gabbay. A General Theory of Structured Consequence Relations , 1995 .
[5] Heinrich Wansing,et al. A Full-Circle Theorem for Simple Tense Logic , 1997 .
[6] Heinrich Wansing,et al. The Logic of Information Structures , 1993, Lecture Notes in Computer Science.
[7] Heinrich Wansing,et al. Proof Theory of Modal Logic , 1996 .
[8] Nuel Belnap,et al. Linear Logic Displayed , 1989, Notre Dame J. Formal Log..
[9] Franz Kutschera. Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle , 1969 .
[10] Heinrich Wansing. Strong Cut-elimination in Display Logic , 1995, Reports Math. Log..
[11] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[12] Heinrich Wansing,et al. Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..
[13] Franz Kutschera,et al. Die Vollständigkeit des Operatorensystems {¬, ∨, ⊃} für die Intuitionistische Aussagenlogik im Rahmen der Gentzensematik , 1968 .
[14] HEINRICH WANSING. Functional completeness for subsystems of intuitionistic propositional logic , 1993, J. Philos. Log..
[15] Peter Schroeder-Heister,et al. A natural extension of natural deduction , 1984, Journal of Symbolic Logic.
[16] M. Kracht. Power and Weakness of the Modal Display Calculus , 1996 .