Sharing the cost of a network: core and core allocations

Abstract. This paper discusses the core of the game corresponding to the standard fixed tree problem. We consider the weighted adaptation of the constrained egalitarian solution of Dutta and Ray (1989). The core of the standard fixed tree game equals the set of all weighted constrained egalitarian solutions. Each weighted constrained egalitarian solution is determined (in polynomial time) as a home-down allocation, which creates further insight in the local behaviour of the weighted constrained egalitarian solution. The constrained egalitarian solution is characterized in terms of a cost sharing mechanism.

[1]  S. Littlechild A simple expression for the nucleolus in a special case , 1974 .

[2]  Mark Voorneveld,et al.  Voluntary Contributions to Multiple Public Projects , 2003 .

[3]  Debraj Ray,et al.  A CONCEPT OF EGALITARIANISM UNDER PARTICIPATION , 1989 .

[4]  Jos A. M. Potters,et al.  Consistent solution rules for standard tree enterprises , 1999 .

[5]  Daniel Granot,et al.  Computational Complexity of a Cost Allocation Approach to a Fixed Cost Spanning Forest Problem , 1992, Math. Oper. Res..

[6]  Debraj Ray,et al.  A Concept of Egalitarianism under Participation Constraints , 1989 .

[7]  G. Owen,et al.  The kernel/nucleolus of a standard tree game , 1996 .

[8]  E. Kalai,et al.  On weighted Shapley values , 1983 .

[9]  Nimrod Megiddo,et al.  Computational Complexity of the Game Theory Approach to Cost Allocation for a Tree , 1978, Math. Oper. Res..

[10]  Tatsuro Ichiishi,et al.  Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .

[11]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[12]  Daniel J. Kleitman,et al.  Cost allocation for a spanning tree , 1973, Networks.

[13]  T. Driessen Cooperative Games, Solutions and Applications , 1988 .

[14]  L. Shapley A Value for n-person Games , 1988 .

[15]  Pradeep Dubey The Shapley Value as Aircraft Landing Fees--Revisited , 1982 .

[16]  Maurice Koster Hierarchical constrained egalitarianism in TU-games , 2002, Math. Soc. Sci..

[17]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[18]  Udo Ebert,et al.  Using equivalent income of equivalent adults to rank income distributions , 1999 .

[19]  Dov Monderer,et al.  Weighted values and the core , 1992 .

[20]  Stef Tijs,et al.  Weighted allocation rules for standard fixed tree games , 2004, Math. Methods Oper. Res..

[21]  David Aadland,et al.  Shared irrigation costs: An empirical and axiomatic analysis , 1998 .

[22]  Zvi Galil,et al.  Applications of efficient mergeable heaps for optimization problems on trees , 2004, Acta Informatica.

[23]  S. C. Littlechild,et al.  Aircraft Landing Fees: A Game Theory Approach , 1977 .

[24]  Michael Maschler,et al.  Spanning network games , 1998, Int. J. Game Theory.

[25]  L. Shapley Cores of convex games , 1971 .

[26]  J. Potters,et al.  Airport problems and consistent allocation rules , 1999 .

[27]  Irinel Dragan,et al.  Superadditivity for solutions of coalitional games , 1989 .

[28]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..

[29]  H. Peyton Young,et al.  Cost allocation, demand revelation, and core implementation , 1998 .