Hierarchical Dobiński-type relations via substitution and the moment problem

We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a, a†] = 1) monomials of the form exp[λ(a†)ra], r = 1, 2, ..., under the composition of their exponential generating functions. They turn out to be of Sheffer type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a) the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulae and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.

[1]  Jacob Katriel,et al.  Combinatorial aspects of boson algebra , 1974 .

[2]  G. M. Constantine,et al.  A Stochastic Process Interpretation of Partition Identities , 1994, SIAM J. Discret. Math..

[3]  Matthias Schork,et al.  On the combinatorics of normal ordering bosonic operators and deformations of it , 2003 .

[4]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[5]  Maths-type /q-deformed coherent states for /q>1 , 2003, quant-ph/0303120.

[6]  C. Quesne New q-deformed coherent states with an explicitly known resolution of unity , 2002 .

[7]  D. Popov Photon-added Barut–Girardello coherent states of the pseudoharmonic oscillator , 2002 .

[8]  Philippe Flajolet,et al.  ANALYTIC COMBINATORICS — SYMBOLIC COMBINATORICS , 2002 .

[9]  Coherent State Measures and the Extended Dobinski relations , 2002, quant-ph/0211061.

[10]  Gregory M. Constantine Identities over set partitions , 1999, Discret. Math..

[11]  A. Prudnikov,et al.  Integrals and series of special functions , 1983 .

[12]  J.-G. Luque,et al.  Hankel hyperdeterminants and Selberg integrals , 2003 .

[13]  Generalized Coherent States Associated with the Cλ-Extended Oscillator , 2001, quant-ph/0108126.

[14]  UK,et al.  The general boson normal ordering problem , 2003 .

[15]  J. Pitman Some Probabilistic Aspects of Set Partitions , 1997 .

[16]  France,et al.  Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem , 2005 .

[17]  G. Sardanashvily,et al.  LETTER TO THE EDITOR: The Liouville-Arnold-Nekhoroshev theorem for non-compact invariant manifolds , 2003 .

[18]  A. I. Solomon,et al.  MITTAG-LEFFLER COHERENT STATES , 1999 .

[19]  Karol A. Penson,et al.  Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems , 2001 .

[20]  Karol A. Penson,et al.  Coherent States from Combinatorial Sequences , 2001 .

[21]  N. J. A. Sloane,et al.  The Number of Hierarchical Orderings , 2003, Order.

[22]  Wolfdieter Lang,et al.  On Generalizations of the Stirling Number Triangles , 2000 .

[23]  Steven Roman The Umbral Calculus , 1984 .

[25]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[26]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[27]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[28]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[29]  Tianming Wang,et al.  Some identities related to reciprocal functions , 2003, Discret. Math..

[30]  A. I. Solomon,et al.  The Boson Normal Ordering Problem and Generalized Bell Numbers , 2002 .

[31]  G. Andrews ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .

[32]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[33]  N. J. A. Sloane,et al.  Some canonical sequences of integers , 1995, math/0205301.

[34]  Gérard Henry Edmond Duchamp,et al.  Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma , 1995 .

[35]  A. Horzela,et al.  Combinatorial Field Theories via Boson Normal Ordering , 2004 .