Correlation energy estimates in periodic extended systems using the localized natural bond orbital coupled cluster approach

A new approach for the determination of correlation energies in periodic extended systems is proposed using the high transferability of amplitudes and integrals from natural bond orbital coupled cluster (NBO CC) calculations performed for small subunits. It is shown that the NBO CC calculations can in fact deliver detailed correlated wave function information for extended periodic systems. As an example we apply the ideas presented in this paper to determine an estimate for the valence correlation energy in diamond at the CCSD level.

[1]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[2]  Josef Paldus,et al.  Coupled-cluster approach to electron correlation in one dimension. II. Cyclic polyene model in localized basis , 1984 .

[3]  Stollhoff,et al.  Correlated ground state of diamond reexamined. , 1988, Physical review. B, Condensed matter.

[4]  P. Vasilopoulos,et al.  The local approach: Electronic correlations in small hydrocarbon molecules , 1986 .

[5]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[6]  E. Glendening,et al.  Natural bond orbital methods , 2002 .

[7]  S. Saebo Strategies for electron correlation calculations on large molecular systems , 1992 .

[8]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[9]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[10]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[11]  So Hirata,et al.  Highly accurate treatment of electron correlation in polymers: Coupled-cluster and many-body perturbation theories , 2001 .

[12]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[13]  R. Bartlett,et al.  Localized correlation treatment using natural bond orbitals , 2003 .

[14]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[15]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[16]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[17]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[18]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[19]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[20]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[21]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[22]  K. Ruedenberg,et al.  Electron pairs, localized orbitals and electron correlation , 2002 .

[23]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[24]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[25]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[26]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[27]  P. Claverie,et al.  Localized bond orbitals and the correlation problem , 1969 .

[28]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[29]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[30]  B. Kirtman Local quantum chemistry: The local space approximation for Møller–Plesset perturbation theory , 1995 .

[31]  F. Weinhold,et al.  Natural population analysis , 1985 .

[32]  Stoll,et al.  Correlation energy of diamond. , 1992, Physical review. B, Condensed matter.

[33]  Marco Häser,et al.  Møller-Plesset (MP2) perturbation theory for large molecules , 1993 .

[34]  B. Kirtman,et al.  Local space approximation for configuration interaction and coupled cluster wave functions , 1986 .

[35]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[36]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[37]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .