A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster.

[1]  J. Proffitt DNase I-hypersensitive sites in the galactose gene cluster of Saccharomyces cerevisiae , 1985, Molecular and cellular biology.

[2]  Q. Ju,et al.  REB1, a yeast DNA-binding protein with many targets, is essential for growth and bears some resemblance to the oncogene myb , 1990, Molecular and cellular biology.

[3]  Q. Ju,et al.  Purification and characterization of the yeast rDNA binding protein REB1. , 1990, The Journal of biological chemistry.

[4]  R. Planta,et al.  A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. , 1992, The EMBO journal.

[5]  J. Remacle,et al.  A REB1-binding site is required for GCN4-independent ILV1 basal level transcription and can be functionally replaced by an ABF1-binding site , 1992, Molecular and cellular biology.

[6]  S. Yagi,et al.  The UAS of the yeast GAPDH promoter consists of multiple general functional elements including RAP1 and GRF2 binding sites. , 1994, The Journal of veterinary medical science.

[7]  I. Graham,et al.  A Reb1p‐binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential , 1994, Molecular microbiology.

[8]  S. Knab,et al.  Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. , 1994, European journal of biochemistry.

[9]  G. Fourel,et al.  Cohabitation of insulators and silencing elements in yeast subtelomeric regions , 1999, The EMBO journal.

[10]  W. Bentley,et al.  Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. , 2000, Biotechnology and bioengineering.

[11]  M. Grunstein,et al.  TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. , 2001, Molecular cell.

[12]  G. Fourel,et al.  An activation‐independent role of transcription factors in insulator function , 2001, EMBO reports.

[13]  J Wu,et al.  Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. , 2001, Molecular cell.

[14]  Stuart L. Schreiber,et al.  Active genes are tri-methylated at K4 of histone H3 , 2002, Nature.

[15]  L. Jespersen Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. , 2003, FEMS yeast research.

[16]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[17]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.

[18]  S. Cawley,et al.  Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs , 2004, Cell.

[19]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[20]  Fred Winston,et al.  Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene , 2004, Nature.

[21]  B. Séraphin,et al.  Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase , 2005, Cell.

[22]  Achim Leutz,et al.  Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain. , 2005, Genes & development.

[23]  Nevan J. Krogan,et al.  Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex , 2005, Cell.

[24]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[25]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[26]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[27]  Kevin Struhl,et al.  Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. , 2005, Molecular cell.

[28]  E. A. Packham,et al.  The multifunctional transcription factors Abf1p, Rap1p and Reb1p are required for full transcriptional activation of the chromosomalPGK gene inSaccharomyces cerevisiae , 1996, Molecular and General Genetics MGG.

[29]  G. Fink,et al.  Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae , 2006, Cell.

[30]  M. Bryk,et al.  Sir2 represses endogenous polymerase II transcription units in the ribosomal DNA nontranscribed spacer. , 2006, Molecular biology of the cell.

[31]  J. Zhu,et al.  Overlapping transcripts, double-stranded RNA and antisense regulation: A genomic perspective , 2006, Cellular and Molecular Life Sciences CMLS.

[32]  Christopher L. Warren,et al.  Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. , 2006, Molecular cell.

[33]  Jürg Bähler,et al.  Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation , 2007, Nature.

[34]  C. Hertel,et al.  A role for noncoding transcription in activation of the yeast PHO5 gene , 2007, Proceedings of the National Academy of Sciences.

[35]  Dinshaw J. Patel,et al.  Multivalent engagement of chromatin modifications by linked binding modules , 2007, Nature Reviews Molecular Cell Biology.

[36]  A. Shilatifard,et al.  A site to remember: H3K36 methylation a mark for histone deacetylation. , 2007, Mutation research.

[37]  Guennaelle Dieppois,et al.  Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae , 2007, Cell.

[38]  D. Tollervey,et al.  Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control , 2007, The EMBO journal.

[39]  F. Pauler,et al.  Silencing by imprinted noncoding RNAs: is transcription the answer? , 2007, Trends in genetics : TIG.

[40]  S. Buratowski,et al.  Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. , 2008, Molecular cell.

[41]  R. Sternglanz,et al.  NADP Regulates the Yeast GAL Induction System , 2008, Science.

[42]  A. Morillon,et al.  A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. , 2008, Genes & development.