Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter.

[1]  B. Torok-Storb,et al.  The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. , 2002, Blood.

[2]  K. Bunting ABC Transporters as Phenotypic Markers and Functional Regulators of Stem Cells , 2002, Stem cells.

[3]  M. Dean,et al.  The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[4]  J. Shaw,et al.  Global and societal implications of the diabetes epidemic , 2001, Nature.

[5]  M. Goodell,et al.  Somatic stem cell plasticity: current evidence and emerging concepts. , 2001, Experimental hematology.

[6]  M. C. Hu,et al.  Identification of a candidate human neurohematopoietic stem-cell population. , 2001, Blood.

[7]  M. Ogawa,et al.  Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. , 2001, Blood.

[8]  H. Nakauchi,et al.  The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype , 2001, Nature Medicine.

[9]  H. Blau,et al.  The Evolving Concept of a Stem Cell Entity or Function? , 2001, Cell.

[10]  M. Entman,et al.  Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. , 2001, The Journal of clinical investigation.

[11]  J. Habener,et al.  Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. , 2001, Diabetes.

[12]  Irving L. Weissman,et al.  A Genetic Analysis of Neural Progenitor Differentiation , 2001, Neuron.

[13]  H. Blau,et al.  From marrow to brain: expression of neuronal phenotypes in adult mice. , 2000, Science.

[14]  Xin Wang,et al.  Purified hematopoietic stem cells can differentiate into hepatocytes in vivo , 2000, Nature Medicine.

[15]  R. Mulligan,et al.  Hoechst dye efflux reveals a novel CD7(+)CD34(-) lymphoid progenitor in human umbilical cord blood. , 2000, Blood.

[16]  T. Lu,et al.  Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. , 2000, Blood.

[17]  E. Ryan,et al.  Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. , 2000, The New England journal of medicine.

[18]  M. Goodell,et al.  Hematopoietic potential of stem cells isolated from murine skeletal muscle. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Mulligan,et al.  Dystrophin expression in the mdx mouse restored by stem cell transplantation , 1999, Nature.

[20]  B. Sorrentino,et al.  Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. , 1998, Blood.

[21]  R. Johnson,et al.  Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species , 1997, Nature Medicine.

[22]  A. S. Conner,et al.  Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo , 1996, The Journal of experimental medicine.

[23]  R. McKay,et al.  Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors , 1994, Neuron.

[24]  I. Roninson,et al.  Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells , 1991, Cell.

[25]  R. McKay,et al.  CNS stem cells express a new class of intermediate filament protein , 1990, Cell.