Coherent one-way quantum conference key agreement based on twin field

Quantum conference key agreement (CKA) enables key sharing among multiple trusted users with information-theoretic security. Currently, the key rates of most quantum CKA protocols suffer from the limit of the total efficiency among quantum channels. Inspired by the coherent one-way and twin-field quantum key distribution (QKD) protocols, we propose a quantum CKA protocol of three users. Exploiting coherent states with intensity 0 and μ to encode logic bits, our protocol can break the limit. Additionally, the requirements of phase randomization and multiple intensity modulation are removed in our protocol, making its experimental demonstration simple.

[1]  Nicolas Gisin,et al.  Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography , 2008 .

[2]  Zong-Wen Yu,et al.  Twin-field quantum key distribution with large misalignment error , 2018, Physical Review A.

[3]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[4]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[5]  Yonggi Jo,et al.  Semi-device-independent multiparty quantum key distribution in the asymptotic limit , 2019, OSA Continuum.

[6]  Chun Zhou,et al.  Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing , 2017 .

[7]  Koji Azuma,et al.  All-photonic intercity quantum key distribution , 2015, Nature Communications.

[8]  Kai Chen,et al.  Phase-Matching Quantum Cryptographic Conferencing , 2020 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Hermann Kampermann,et al.  Conference key agreement with single-photon interference , 2019, New Journal of Physics.

[11]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[12]  K. N. Dollman,et al.  - 1 , 1743 .

[13]  Matej Pivoluska,et al.  Layered quantum key distribution , 2017, 1709.00377.

[14]  Wei Teufelsdreck,et al.  Chin , 2021, COMARCA PERDIDA.

[15]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[16]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[17]  Hua-Lei Yin,et al.  Measurement-Device-Independent Twin-Field Quantum Key Distribution , 2018, Scientific Reports.

[18]  Stefano Pirandola,et al.  Modular network for high-rate quantum conferencing , 2017, Communications Physics.

[19]  Feihu Xu,et al.  W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution , 2015, Scientific Reports.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[22]  Zach DeVito,et al.  Opt , 2017 .

[23]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[24]  D. Bruß,et al.  Quantum Conference Key Agreement: A Review , 2020, Advanced Quantum Technologies.

[25]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[26]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[27]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[28]  Ryutaroh Matsumoto Multiparty quantum-key-distribution protocol without use of entanglement , 2007 .

[29]  M. Suhail Zubairy,et al.  Quantum Secure Group Communication , 2018, Scientific Reports.

[30]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[31]  V. Scarani,et al.  Fast and simple one-way quantum key distribution , 2005, quant-ph/0506097.

[32]  Hao Li,et al.  Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. , 2020, Physical review letters.

[33]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[34]  Ying Guo,et al.  Continuous-variable measurement-device-independent multipartite quantum communication , 2015, 1512.03876.

[35]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[36]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[37]  S.Bose,et al.  A Multiparticle Generalization of Entanglement Swapping , 1997 .

[38]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[39]  Chun Zhou,et al.  Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources. , 2016, Optics express.