A Riemann-Hilbert problem for biorthogonal polynomials

We characterize the biorthogonal polynomials that appear in the theory of coupled random matrices via a Riemann-Hilbert problem. Our Riemann-Hilbert problem is different from the ones that were proposed recently by Ercolani and McLaughlin, Kapaev, and Bertola et al. We believe that our formulation may be tractable to asymptotic analysis.

[1]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[2]  K. Mclaughlin,et al.  Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model , 2001 .

[3]  Walter Van Assche,et al.  Riemann-Hilbert Problems for Multiple Orthogonal Polynomials , 2001 .

[4]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[5]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[6]  A.B.J. Kuijlaars,et al.  Random matrices with external source and multiple orthogonal polynomials , 2003 .

[7]  Walter Van Assche,et al.  Some classical multiple orthogonal polynomials , 2001 .

[8]  W. Van Assche,et al.  Multiple orthogonal polynomials for classical weights , 2003 .

[9]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[10]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[11]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[12]  L. M.,et al.  A Method of Integration over Matrix Variables , 2005 .

[13]  W. Van Assche,et al.  Quadratic Hermite–Padé Approximation to the Exponential Function: A Riemann–Hilbert Approach , 2003 .

[14]  A. Kapaev Riemann?Hilbert problem for bi-orthogonal polynomials , 2002, nlin/0207036.

[15]  A. Aptekarev,et al.  Multiple orthogonal polynomials , 1998 .

[16]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[17]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[18]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[19]  Duality, Biorthogonal Polynomials¶and Multi-Matrix Models , 2001, nlin/0108049.

[20]  Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann–Hilbert Problem , 2002, nlin/0208002.

[21]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .