ATOMIC AND MOLECULAR CARBON AS A TRACER OF TRANSLUCENT CLOUDS

Using archival, high-resolution far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra of 34 Galactic O and B stars, we measure C I column densities and compare them with measurements from the literature of CO and H2 with regard to understanding the presence of translucent clouds along the line of sight. We find that the CO/H2 and CO/C I ratios provide good discriminators for the presence of translucent material, and both increase as a function of molecular fraction, fN = 2N(H2)/N(H). We suggest that sightlines with values below CO/H2 ≈10–6 and CO/C I ≈1 contain mostly diffuse molecular clouds, while those with values above sample clouds in the transition region between diffuse and dark. These discriminating values are also consistent with the change in slope of the CO versus H2 correlation near the column density at which CO shielding becomes important, as evidenced by the change in photochemistry regime studied by Sheffer et al. Based on the lack of correlation of the presence of translucent material with traditional measures of extinction, we recommend defining "translucent clouds" based on the molecular content rather than line-of-sight extinction properties.

[1]  A. Jensen,et al.  Is There Enhanced Depletion of Gas-Phase Nitrogen in Moderately Reddened Lines of Sight? , 2006, astro-ph/0610843.

[2]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[3]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[4]  Edward B. Jenkins,et al.  The Distribution of Thermal Pressures in the Interstellar Medium , 2001 .

[5]  Paule Sonnentrucker,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 185418 , 2003 .

[6]  PHYSICAL CONDITIONS IN THE FOREGROUND GAS OF REFLECTION NEBULAE: NGC 2023, VDB 102, AND NGC 7023 , 2001, astro-ph/0103151.

[7]  F. Le Petit,et al.  A far UV study of interstellar gas towards HD 34078: High excitation H2 and small scale structure , 2005 .

[8]  E. Jenkins,et al.  A survey of interstellar C I - Insights on carbon abundances, UV grain albedos, and pressures in the interstellar medium , 1979 .

[9]  C. Danforth,et al.  A FUSE Survey of Interstellar Molecular Hydrogen toward High-Latitude AGNs , 2005, astro-ph/0507581.

[10]  Edward J. Shaya,et al.  The Abundance of CO in Diffuse Interstellar Clouds , 1979 .

[11]  T. Snow,et al.  A Study of the ρ Ophiuchi Cloud: Mapping the Distribution and the Motions of Interstellar Gas , 2008 .

[12]  Benjamin J. McCall,et al.  Diffuse Atomic and Molecular Clouds , 2006 .

[13]  R. C. Bohlin,et al.  A survey of interstellar molecular hydrogen. I , 1977 .

[14]  Multi-wavelength observations of a nearby multi-phase interstellar cloud , 2008, 0802.4059.

[15]  Matthew K. Browning,et al.  Inferring Physical Conditions in Interstellar Clouds of H2 , 2003 .

[16]  B. Savage,et al.  High-Resolution Ultraviolet Observations of the Highly Ionized Interstellar Gas toward Radio Loops I and IV , 1997 .

[17]  Blair D. Savage,et al.  An IUE Survey of Interstellar H I LY alpha Absorption , 1994 .

[18]  N. Abel,et al.  Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships , 2008, 0807.0940.

[19]  Paule Sonnentrucker,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002 .

[20]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[21]  G. Ferland,et al.  A PDR-Code Comparison Study , 2007, astro-ph/0702231.

[22]  Edward L. Fitzpatrick,et al.  An Analysis of the Shapes of Ultraviolet Extinction Curves. III. an Atlas of Ultraviolet Extinction Curves , 1990 .

[23]  Edward B. Jenkins,et al.  Ultraviolet studies of the interstellar gas , 1975 .

[24]  A. Tielens,et al.  Chemical Rates on Small Grains and PAHs: C+ Recombination and H2 Formation , 2008, 0803.0138.

[25]  D. York,et al.  Far Ultraviolet Spectroscopic Explorer Observations of Diffuse Interstellar Molecular Hydrogen , 2000 .

[26]  A. Tielens,et al.  The Effects of Polycyclic Aromatic Hydrocarbons on the Chemistry of Photodissociation Regions , 1998 .

[27]  È. Roueff,et al.  The role of the geometry and dust environment in stationary models of translucent interstellar clouds , 2000 .

[28]  Emilie Habart,et al.  H2 formation and excitation in the diffuse interstellar medium , 2002 .

[29]  Paule Sonnentrucker,et al.  MOLECULAR HYDROGEN IN THE FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER TRANSLUCENT LINES OF SIGHT: THE FULL SAMPLE , 2008 .

[30]  D. York,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 192639 , 2002, astro-ph/0205403.

[31]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[32]  ULTRAVIOLET EXTINCTION PROPERTIES IN THE MILKY WAY , 2004, astro-ph/0408409.

[33]  H. Holweger Photospheric Abundances: Problems, Updates, Implications , 2001, astro-ph/0107426.

[34]  J. L. Bourlot,et al.  Modeling of diffuse molecular gas applied to HD 102065 observations , 2008, 0802.4003.

[35]  G. Ferland,et al.  A photon dominated region code comparison study , 2007, astro-ph/0702231.

[36]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[37]  Kevin France,et al.  Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium , 2007 .

[38]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.