An Elite Pool-Based Big Bang-Big Crunch Metaheuristic for Data Clustering

This paper delves into the capacity of enhanced Big Bang-Big Crunch (EBB-BC) metaheuristic to handle data clustering problems. BB-BC is a product of an evolution theory of the universe in physics and astronomy. Two main phases of BB-BC are big bang and big crunch. The big bang phase involves a creation of a population of random initial solutions, while in the big crunch phase these solutions are shrunk into one elite solution exhibited by a mass center. This study looks into enhancing the BB-BC’s effectiveness in clustering data. Where, the inclusion of an elite pool alongside implicit solution recombination and local search method, contribute to such enhancement. Such strategies resulted in a balanced search of good quality population that is also diverse. The proposed elite pool-based BB-BC was compared with the original BB-BC and other identical metaheuristics. Fourteen different clustering datasets were used to test BB-BC and the elite pool-based BB-BC showed better performance compared to the original BB-BC. BB-BC was impacted more by the incorporated strategies. The experiments outcomes demonstrate the high quality solutions generated by elite pool-based BB-BC. Its performance in fact supersedes that of identical metaheuristics such as swarm intelligence and evolutionary algorithms.

[1]  Mutasem K. Alsmadi,et al.  An efficient similarity measure for content based image retrieval using memetic algorithm , 2017 .

[2]  Mao Ye,et al.  A tabu search approach for the minimum sum-of-squares clustering problem , 2008, Inf. Sci..

[3]  Mutasem K. Alsmadi,et al.  A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation , 2016, Ain Shams Engineering Journal.

[4]  Gregory M. P. O’Hare,et al.  The application of cluster analysis in geophysical data interpretation , 2010 .

[5]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[6]  Salwani Abdullah,et al.  Data Clustering Using Big Bang–Big Crunch Algorithm , 2011 .

[7]  Teofilo F. Gonzalez,et al.  On the computational complexity of clustering and related problems , 1982 .

[8]  Jinfeng Li,et al.  Chameleon based on clustering feature tree and its application in customer segmentation , 2009, Ann. Oper. Res..

[9]  Chi-Yang Tsai,et al.  Particle swarm optimization with selective particle regeneration for data clustering , 2011, Expert Syst. Appl..

[10]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[11]  Salwani Abdullah,et al.  A combined approach for clustering based on K-means and gravitational search algorithms , 2012, Swarm Evol. Comput..

[12]  Mutasem K. Alsmadi,et al.  A HYBRID FIREFLY ALGORITHM WITH FUZZY-C MEAN ALGORITHM FOR MRI BRAIN SEGMENTATION , 2014 .

[13]  Lei Zhang,et al.  A novel ant-based clustering algorithm using the kernel method , 2011, Inf. Sci..

[14]  Hussein A. Abbass,et al.  Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms , 2008, Multiobjective Problem Solving from Nature.

[15]  Wenjie Li,et al.  A spectral analysis approach to document summarization: Clustering and ranking sentences simultaneously , 2011, Inf. Sci..

[16]  Amit Konar,et al.  Automatic Hard Clustering Using Improved Differential Evolution Algorithm , 2009 .

[17]  Mutasem K. Alsmadi,et al.  Query-sensitive similarity measure for content-based image retrieval using meta-heuristic algorithm , 2017, J. King Saud Univ. Comput. Inf. Sci..

[18]  Shyi-Ming Chen,et al.  Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques , 2010, Inf. Sci..

[19]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[20]  Celso C. Ribeiro,et al.  Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications , 2010 .

[21]  Min-Yuan Cheng,et al.  Differential Big Bang - Big Crunch algorithm for construction-engineering design optimization , 2018 .

[22]  Khairuddin Omar,et al.  Fish Classification: Fish Classification Using Memetic Algorithms with Back Propagation Classifier , 2012 .

[23]  Moacir Kripka,et al.  "Big Crunch" Optimization Method , 2008 .

[24]  Ali Maroosi,et al.  Application of honey-bee mating optimization algorithm on clustering , 2007, Appl. Math. Comput..

[25]  V. Mani,et al.  Clustering using firefly algorithm: Performance study , 2011, Swarm Evol. Comput..

[26]  Panos M. Pardalos,et al.  Clustering and Classification Algorithms in Food and Agricultural Applications: A Survey , 2009 .

[27]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[28]  M. Alsmadi,et al.  Extended Absolute Fuzzy Connectedness Segmentation Algorithm Utilizing Region and Boundary-Based Information , 2017 .

[29]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[30]  Tony H. Grubesic,et al.  On The Application of Fuzzy Clustering for Crime Hot Spot Detection , 2006 .

[31]  Tania S. Douglas,et al.  Fuzzy clustering to detect tuberculous meningitis-associated hyperdensity in CT images , 2008, Comput. Biol. Medicine.

[32]  Mutasem Alsmadi,et al.  Facial recognition under expression variations , 2016, Int. Arab J. Inf. Technol..

[33]  Zülal Güngör,et al.  K-harmonic means data clustering with simulated annealing heuristic , 2007, Appl. Math. Comput..

[34]  Sushmita Mitra,et al.  Satellite image segmentation with Shadowed C-Means , 2011, Inf. Sci..

[35]  P.N. Suganthan,et al.  A Robust Neural Gas algorithm for clustering analysis , 2004, International Conference on Intelligent Sensing and Information Processing, 2004. Proceedings of.

[36]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[37]  Hrvoje Gold,et al.  Vehicle Routing Problem , 2008, Encyclopedia of GIS.

[38]  Suchita S. Mesakar,et al.  A Review of Clustering Algorithms , 2013 .

[39]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[40]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[41]  G. Wiselin Jiji,et al.  Hybrid data clustering approach using K-Means and Flower Pollination Algorithm , 2015, ArXiv.

[42]  Ivona Brajevic,et al.  Artificial bee colony algorithm for the capacitated vehicle routing problem , 2011 .

[43]  O. Hasançebi,et al.  An exponential big bang-big crunch algorithm for discrete design optimization of steel frames , 2012 .

[44]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  M. Alsmadi,et al.  A GENERAL FISH CLASSIFICATION METHODOLOGY USING META-HEURISTIC ALGORITHM WITH BACK PROPAGATION CLASSIFIER , 2014 .

[46]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[47]  Khairuddin Omar,et al.  A hybrid memetic algorithm with back-propagation classifier for fish classification based on robust features extraction from PLGF and shape measurements , 2011 .

[48]  Wei-Chang Yeh,et al.  Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering , 2015, PloS one.

[49]  Mutasem K. Alsmadi,et al.  MRI Brain Segmentation Using a Hybrid Artificial Bee Colony Algorithm with Fuzzy-C Mean Algorithm , 2015 .

[50]  Yangyang Li,et al.  Gene transposon based clone selection algorithm for automatic clustering , 2012, Inf. Sci..

[51]  H.M. Genc,et al.  Bearing-Only Target Tracking Based on Big Bang – Big Crunch Algorithm , 2008, 2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008).

[52]  Won Suk Lee,et al.  Anomaly intrusion detection by clustering transactional audit streams in a host computer , 2010, Inf. Sci..

[53]  Olli Bräysy,et al.  Active-guided evolution strategies for large-scale capacitated vehicle routing problems , 2007, Comput. Oper. Res..

[54]  R. J. Kuo,et al.  Integration of particle swarm optimization and genetic algorithm for dynamic clustering , 2012, Inf. Sci..

[55]  Ángel Corberán,et al.  Scatter search , 2003 .

[56]  Masri Ayob,et al.  Effect of Elite Pool and Euclidean Distance in Big Bang-Big Crunch Metaheuristic for Post-Enrolment Course TimetablingProblems , 2013 .

[57]  Ibrahim Almarashdeh,et al.  Hybrid Elitist-Ant System for Nurse-Rostering Problem , 2019, J. King Saud Univ. Comput. Inf. Sci..