Engineered nanomaterial interactions with bilayer lipid membranes: screening platforms to assess nanoparticle toxicity

Engineered nanomaterials (ENMs) have attractive functional properties and are increasingly being used in commercial products. However, ENMs present health risks that are poorly understood and difficult to assess. Because ENMs must interface with cell membranes to cause biological effects, improved methods are needed to measure ENM-biomembrane interactions. The goals of this paper are to review the current status of methods to characterise interactions between ENMs and bilayer lipid membranes that mimic cell membranes, and to present example applications of the methods relevant to nanotoxicology. Four approaches are discussed: electrochemical methods that measure ENM-induced ion leakage through lipid bilayers, optical methods that measure dye leakage from liposomes, partitioning methods that measure ENM distribution coefficients between aqueous solution and immobilised lipid bilayers, and theoretical models capable of predicting fundamental molecular interactions between ENMs and biomembranes. For each approach, current literature is summarised, recent results are given, and future prospects are analysed, including the potential to be used in a high-throughput mode. The relative advantages of the various approaches are discussed, along with their synergistic potential to provide multi-dimensional characterisation of ENM-biomembrane interactions for robust health risk assessment algorithms.

[1]  Sachin R. Jadhav,et al.  Voltage dependent closure of PorB class II porin from Neisseria meningitidis investigated using impedance spectroscopy in a tethered bilayer lipid membrane interface. , 2013, Journal of colloid and interface science.

[2]  J. Posner,et al.  Role of nanoparticle surface functionality in the disruption of model cell membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  Lipid bilayer array for simultaneous recording of ion channel activities , 2012 .

[4]  H. Tien,et al.  Membrane Biophysics: As Viewed From Experimental Bilayer Lipid Membranes , 2012 .

[5]  Michele Zagnoni,et al.  Miniaturised technologies for the development of artificial lipid bilayer systems. , 2012, Lab on a chip.

[6]  J. Posner,et al.  Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. , 2012, Environmental science & technology.

[7]  A. Alexander-Katz,et al.  Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: simulations and theory , 2011 .

[8]  J. Posner,et al.  Distribution of fullerene nanomaterials between water and model biological membranes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[9]  Jürgen Rühe,et al.  Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. , 2011, ACS nano.

[10]  Shoji Takeuchi,et al.  Electrical Access to Lipid Bilayer Membrane Microchambers for Transmembrane Analysis , 2011, Journal of Microelectromechanical Systems.

[11]  A. Balazs,et al.  Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels. , 2011, ACS nano.

[12]  Kiril D Hristovski,et al.  Octanol-water distribution of engineered nanomaterials , 2011, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[13]  T. Roose,et al.  Electrophysiological characterization of membrane disruption by nanoparticles. , 2011, ACS nano.

[14]  G. Kukolj,et al.  Development and Validation of a High-Throughput Screening Assay for the Hepatitis C Virus p7 Viroporin , 2011, Journal of biomolecular screening.

[15]  I. Hsiao,et al.  Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. , 2011, Chemical research in toxicology.

[16]  M. Klein,et al.  Nanoscale carbon particles and the stability of lipid bilayers , 2011 .

[17]  W. Knoll,et al.  Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes , 2011 .

[18]  Vincent Castranova,et al.  Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. , 2010, ACS nano.

[19]  L. J. Lee,et al.  Formation and finite element analysis of tethered bilayer lipid structures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  Arjang Hassibi,et al.  A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[21]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[22]  K. Shiraki,et al.  One-dimensional protein-based nanoparticles induce lipid bilayer disruption: carbon nanotube conjugates and amyloid fibrils. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[23]  A. Jenkins,et al.  An electrochemical impedance study of the effect of pathogenic bacterial toxins on tethered bilayer lipid membrane , 2010 .

[24]  Jiaqi Lin,et al.  Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. , 2010, ACS nano.

[25]  Kai Yang,et al.  Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. , 2010, Nature nanotechnology.

[26]  M. Niwano,et al.  Stable lipid bilayers based on micro- and nano-fabrication , 2010 .

[27]  Zhi Ning,et al.  Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares. , 2010, American journal of physiology. Lung cellular and molecular physiology.

[28]  M. Niwano,et al.  Improved stability of free-standing lipid bilayers based on nanoporous alumina films , 2010 .

[29]  Wataru Shinoda,et al.  Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. , 2010, The journal of physical chemistry. B.

[30]  Elijah J Petersen,et al.  Relevance of octanol–water distribution measurements to the potential ecological uptake of multi‐walled carbon nanotubes , 2010, Environmental toxicology and chemistry.

[31]  Elijah J Petersen,et al.  Analysis of fullerene‐C60 and kinetic measurements for its accumulation and depuration in Daphnia magna , 2010, Environmental toxicology and chemistry.

[32]  Marco Tartagni,et al.  Parallel Recording of Single Ion Channels: A Heterogeneous System Approach , 2010, IEEE Transactions on Nanotechnology.

[33]  P. Schwille,et al.  Surface analysis of membrane dynamics. , 2010, Biochimica et biophysica acta.

[34]  M. Niwano,et al.  Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  Petr Král,et al.  Sandwiched graphene--membrane superstructures. , 2010, ACS nano.

[36]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[37]  Yiliang He,et al.  Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. , 2009, Chemosphere.

[38]  Shoji Takeuchi,et al.  Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array. , 2009, Analytical chemistry.

[39]  I. Vattulainen,et al.  Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective , 2009 .

[40]  F. Winkler,et al.  Formation of individual protein channels in lipid bilayers suspended in nanopores. , 2009, Colloids and surfaces. B, Biointerfaces.

[41]  T. Hianik,et al.  Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays , 2009 .

[42]  Sachin R. Jadhav,et al.  Compact Low-Power Impedance-to-Digital Converter for Sensor Array Microsystems , 2009, IEEE Journal of Solid-State Circuits.

[43]  Iseult Lynch,et al.  Protein-nanoparticle interactions: What does the cell see? , 2009, Nature nanotechnology.

[44]  Chao Yang,et al.  Fully Integrated Seven-Order Frequency-Range Quadrature Sinusoid Signal Generator , 2009, IEEE Transactions on Instrumentation and Measurement.

[45]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[46]  W. Goddard,et al.  Partitioning of poly(amidoamine) dendrimers between n-octanol and water. , 2009, Environmental science & technology.

[47]  Markus Deserno,et al.  Mesoscopic membrane physics: concepts, simulations, and selected applications. , 2009, Macromolecular rapid communications.

[48]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[49]  R. Larson,et al.  Multiscale Modeling of Dendrimers and Their Interactions with Bilayers and Polyelectrolytes , 2009, Molecules.

[50]  H Morgan,et al.  Microfluidic array platform for simultaneous lipid bilayer membrane formation. , 2009, Biosensors & bioelectronics.

[51]  A. Juška Minimal models of multi-site ligand-binding kinetics. , 2008, Journal of theoretical biology.

[52]  A. Ouellette,et al.  Mechanisms of alpha-defensin bactericidal action: comparative membrane disruption by Cryptdin-4 and its disulfide-null analogue. , 2008, Biochemistry.

[53]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[54]  Emmanuel M. Drakakis,et al.  A Real-Time Multi-Channel Monitoring System for Stem Cell Culture Process , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[55]  I. Andricioaei,et al.  Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination. , 2008, The journal of physical chemistry. B.

[56]  Wolfgang Knoll,et al.  Modeling ion transport in tethered bilayer lipid membranes. 1. Passive ion permeation. , 2008, The journal of physical chemistry. B.

[57]  Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques , 2008, Biointerphases.

[58]  C. Jafvert,et al.  Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility. , 2008, Environmental science & technology.

[59]  Sachin R. Jadhav,et al.  Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. , 2008, Journal of colloid and interface science.

[60]  R. Larson,et al.  Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. , 2008, The journal of physical chemistry. B.

[61]  A. Rao,et al.  Calcium signaling in lymphocytes. , 2008, Current opinion in immunology.

[62]  D. Tieleman,et al.  Computer simulation study of fullerene translocation through lipid membranes. , 2008, Nature nanotechnology.

[63]  L. Tiefenauer,et al.  Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review) , 2008, Biointerphases.

[64]  T. Thornton,et al.  Formation of nanopores in suspended lipid bilayers using quantum dots , 2008 .

[65]  C. Burrell,et al.  Rapid detection of influenza A virus in clinical samples using an ion channel switch biosensor. , 2008, Biosensors & bioelectronics.

[66]  Kristen N. Duthie,et al.  Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. , 2008, Nano letters.

[67]  INTERACTION OF POLYAMIDOAMINE (PAMAM) DENDRIMERS WITH GLASSY CARBON SUPPORTED BILAYER LIPID MEMBRANES , 2008 .

[68]  K. Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[69]  Louis Tiefenauer,et al.  Nanopore Arrays for Stable and Functional Free‐Standing Lipid Bilayers , 2007 .

[70]  V. Ginzburg,et al.  Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. , 2007, Nano letters.

[71]  Sara Linse,et al.  The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. , 2007, Advances in colloid and interface science.

[72]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[73]  J. Chopineau,et al.  Biomimetic tethered lipid membranes designed for membrane-protein interaction studies , 2007, European Biophysics Journal.

[74]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[75]  Mart Min,et al.  Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable Medical Devices , 2007, IEEE Transactions on Instrumentation and Measurement.

[76]  Seungpyo Hong,et al.  Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? , 2007, Accounts of chemical research.

[77]  M. Xian,et al.  Insight into the selectivity and gating functions of Streptomyces lividans KcsA , 2007, Proceedings of the National Academy of Sciences.

[78]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[79]  Joel G Pounds,et al.  Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[80]  Shoji Takeuchi,et al.  Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. , 2007, Biosensors & bioelectronics.

[81]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[82]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[83]  Ilsoon Lee,et al.  Tethered lipid bilayers on electrolessly deposited gold for bioelectronic applications. , 2006, Biomacromolecules.

[84]  C. Ahn,et al.  On-Chip Electrochemical Analysis System Using Nanoelectrodes and Bioelectronic CMOS Chip , 2006, IEEE Sensors Journal.

[85]  M. Schick,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006, cond-mat/0609295.

[86]  R. Larson,et al.  Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. , 2006, The journal of physical chemistry. B.

[87]  Michael A Nash,et al.  Automated formation of lipid-bilayer membranes in a microfluidic device. , 2006, Nano letters.

[88]  L. Katz,et al.  Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles , 2006, Environmental toxicology and chemistry.

[89]  Eva Oberdörster,et al.  Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms , 2006 .

[90]  Ingo Köper,et al.  A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. , 2006, Bioconjugate chemistry.

[91]  M. Textor,et al.  The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. , 2006, Biochemistry.

[92]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[93]  B. Orr,et al.  Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[94]  Huajian Gao,et al.  Mechanics of receptor-mediated endocytosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. W. van der Weide,et al.  Colloidal quantum dots initiating current bursts in lipid bilayers. , 2005, Biosensors & bioelectronics.

[96]  C. Bladen,et al.  A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. , 2005, Biophysical journal.

[97]  K. Kremer,et al.  Tunable generic model for fluid bilayer membranes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  B. Binks,et al.  Inversion of emulsions stabilized solely by ionizable nanoparticles. , 2005, Angewandte Chemie.

[99]  E. Y. Smirnova,et al.  Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state , 2005, European Biophysics Journal.

[100]  R. Thewes,et al.  A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion , 2004, IEEE Journal of Solid-State Circuits.

[101]  Bradford G Orr,et al.  Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. , 2004, Chemistry and physics of lipids.

[102]  Vincent M Rotello,et al.  Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. , 2004, Bioconjugate chemistry.

[103]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[104]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[105]  Jeffrey A Hubbell,et al.  Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[106]  Horst Vogel,et al.  HIGHLY ELECTRICALLY INSULATING TETHERED LIPID BILAYERS FOR PROBING THE FUNCTION OF ION CHANNEL PROTEINS , 2003 .

[107]  Axel Scherer,et al.  Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers , 2003 .

[108]  Youxing Jiang,et al.  Functional analysis of an archaebacterial voltage-dependent K+ channel , 2003, Nature.

[109]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[110]  Jurgen Schulte,et al.  Tethered bilayer membranes containing ionic reservoirs: Selectivity and conductance , 2003 .

[111]  B. Alberts,et al.  Molecular Biology of the Cell 4th edition , 2007 .

[112]  D. Banerjee,et al.  Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. , 2002, Methods in molecular biology.

[113]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[114]  E. Yoon,et al.  Analysis of heavy-metal-ions using mercury microelectrodes and a solid-state reference electrode fabricated on a Si wafer , 2000 .

[115]  A. Zehnder,et al.  Liposome—water and octanol—water partitioning of alcohol ethoxylates , 1999, Environmental toxicology and chemistry.

[116]  G. Mironova,et al.  Reconstitution of the Mitochondrial ATP-Dependent Potassium Channel into Bilayer Lipid Membrane1 , 1999, Journal of bioenergetics and biomembranes.

[117]  Jeffrey K. Hollingsworth,et al.  Instrumentation and Measurement , 1998, 2022 International Symposium on Electronics and Telecommunications (ISETC).

[118]  G. Schwarz,et al.  Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. , 1998, Biochemistry.

[119]  Bruce Cornell,et al.  Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization , 1998 .

[120]  K. Miyajima,et al.  Pore formation and translocation of melittin. , 1997, Biophysical journal.

[121]  B. Bechinger,et al.  Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin , 1997, The Journal of Membrane Biology.

[122]  K. Mechtler,et al.  Influence of membrane-active peptides on lipospermine/DNA complex mediated gene transfer. , 1997, Bioconjugate chemistry.

[123]  K. Nakanishi,et al.  Exciton coupled circular dichroic studies of self-assembled brevetoxin-porphyrin conjugates in lipid bilayers and polar solvents. , 1996, Chemistry & biology.

[124]  Beate I. Escher,et al.  Partitioning of Substituted Phenols in Liposome−Water, Biomembrane−Water, and Octanol−Water Systems , 1996 .

[125]  P. Nollert,et al.  Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. , 1995, Biophysical journal.

[126]  H. Govers,et al.  Membrane-water partitioning of polychlorinated biphenyls in small unilamellar vesicles of four saturated phosphatidylcholines. , 1995, Environmental science & technology.

[127]  M. Lafleur,et al.  Study of vesicle leakage induced by melittin. , 1995, Biochimica et biophysica acta.

[128]  R. L. Baldwin,et al.  Conformation and ion channel activity of lymphotoxin at neutral and low pH. , 1995, Journal of immunology.

[129]  Menachem Elimelech,et al.  Particle Deposition and Aggregation: Measurement, Modelling and Simulation , 1995 .

[130]  R. Benz,et al.  Interaction of Serratia marcescens hemolysin (ShlA) with artificial and erythrocyte membranes. Demonstration of the formation of aqueous multistate channels. , 1994, European journal of biochemistry.

[131]  G. Whitesides,et al.  Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces , 1991, Science.

[132]  R. Macdonald,et al.  Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. , 1991, Biochimica et biophysica acta.

[133]  R. Schwarzenbach,et al.  Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids , 1990 .

[134]  W. Hait,et al.  A semiautomated 96-well plate assay for protein kinase C. , 1990, Analytical biochemistry.

[135]  A. Opperhuizen,et al.  Thermodynamics of fish/water and octan-1-ol/water partitioning of some chlorinated benzenes. , 1988, Environmental science & technology.

[136]  N. Weiner,et al.  Effects of Triton X-100 concentration and incubation temperature on carboxyfluorescein release from multilamellar liposomes , 1986 .

[137]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[138]  M. Bally,et al.  Generation of multilamellar and unilamellar phospholipid vesicles , 1986 .

[139]  Milton Manes,et al.  Partitioning of organic compounds in octanol-water systems , 1982 .

[140]  J. Weinstein,et al.  Carboxyfluorescein as a probe for liposome-cell interactions effect of impurities, and purification of the dye , 1981 .

[141]  D. Tosteson,et al.  The sting. Melittin forms channels in lipid bilayers. , 1981, Biophysical journal.

[142]  Curtis D. Klaassen,et al.  Casarett and Doull's Toxicology. The Basic Science of Poisons , 1981 .

[143]  C. T. Chiou,et al.  Partition coefficient and bioaccumulation of selected organic chemicals , 1977 .

[144]  Gary E. Blau,et al.  Partition coefficient to measure bioconcentration potential of organic chemicals in fish , 1974 .

[145]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[146]  S. Hladky,et al.  Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. , 1972, Biochimica et biophysica acta.

[147]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.