The Lyapunov spectrum of families of time-varying matrices

For L??-families of time varying matrices centered at an unperturbed matrix, the Lyapunov spectrum contains the Floquet spectrum obtained by considering periodically varying piecewise constant matrices. On the other hand, it is contained in the Morse spectrum of an associated flow on a vector bundle. A closer analysis of the Floquet spectrum based on geometric control theory in projective space and, in particular, on control sets, is performed. Introducing a real parameter p > 0, which indicates the size of the LI-perturbation, we study when the Floquet spectrum, the Morse spectrum, and hence the Lyapunov spectrum all coincide. This holds, if an inner pair condition is satisfied, for all up to at most countably many p-values.

[1]  C. J. Barros,et al.  On the number of control sets on projective spaces , 1996 .

[2]  Pedro A. Tonelli,et al.  Semigroup actions on homogeneous spaces , 1995 .

[3]  W. Kliemann,et al.  Limit behavior and genericity for nonlinear control systems , 1994 .

[4]  W. Kliemann,et al.  Linear control semigroups acting on projective space , 1993 .

[5]  W. Kliemann,et al.  Some aspects of control systems as dynamical systems , 1993 .

[6]  Wolfgang Kliemann,et al.  Minimal and Maximal Lyapunov Exponents of Bilinear Control Systems , 1993 .

[7]  Wolfgang Kliemann,et al.  Infinite time optimal control and periodicity , 1989 .

[8]  D. Salamon,et al.  Flows on vector bundles and hyperbolic sets , 1988 .

[9]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[10]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[11]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[12]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[13]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[14]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[15]  George R. Sell,et al.  NONAUTONOMOUS DIFFERENTIAL EQUATIONS AND TOPOLOGICAL DYNAMICS. I. THE BASIC THEORY , 1967 .

[16]  G. Seifert Almost periodic solutions for almost periodic systems of ordinary differential equations , 1966 .

[17]  R. K. Miller Almost periodic differential equations as dynamical systems with applications to the existence of A. P. solutions , 1965 .

[18]  Wolfgang Kliemann,et al.  The Morse spectrum of linear flows on vector bundles , 1996 .

[19]  Wolfgang Kliemann,et al.  Asymptotic null controllability of bilinear systems , 1995 .

[20]  E. Joseph Stability radii of two dimensional bilinear systems: Lyapunov exponent approach , 1993 .

[21]  W. Kliemann,et al.  REMARKS ON ERGODIC THEORY OF STOCHASTIC FLOWS AND CONTROL FLOWS , 1992 .

[22]  Wolfgang Kliemann,et al.  Stability Radii and Lyapunov Exponents , 1990 .

[23]  Wolfgang Kliemann,et al.  Large deviations of linear stochastic differential equations , 1987 .

[24]  L. Arnold,et al.  Lyapunov exponents of linear stochastic systems , 1986 .

[25]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[27]  Lamberto Cesari,et al.  Asymptotic Behavior and Stability Problems in Ordinary Differential Equations , 1963 .

[28]  Morton Nadler,et al.  The stability of motion , 1961 .